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1. Introduction

Recently, several authors have used new time series techniques to analyze
the pairwise relationships between such macroeconomic variables as the rate of
growth of the money supply (defined several ways) and the rate of inflation
(Feige and Pearce, 1976), or the rate of growth of demand deposits and the
treasury bill rate (Pierce, 1977a). No statistically significant relationship could be
found between these variables. Becguse such findings are in conflict with most
previous empirical work using similar data, they raise questions about the
validity of the previous methodologies, the new time series techniques, or both.

This paper describes the new time series techniques and illustrates the
advantages and disadvantages of these techniques relative to more traditional
methods. Autoregressive-integrated-moving average (ARIMA) time series models
are used to construct predictions of the variable based on the past history of
the series. The residuals or prediction errors from the ARIMA model are
estimates of the "innovations" of the series, the part of each observation which
could not be predicted using past data. The innovations from one series are
correlated with the innovations from another series at several leads and lags to
determine the relationship between the variables. Several special cases are
worked out to illustrate the advantages and shortcomings of this technique.
I conclude that it is important to consider the power of this procedure before
putting much faith in empirical results which seem to find a "lack of relation-
ship" between macroeconomic time series variables.

IL. A Definition of Causality

Suppose that there are time series observations available on two economic
variabies, {yt} and{x,} , and there is a question about whether "y causesx,” or
"x causes y." For example, suppose that one questions whether the money
supply "causes" nominal income, or vice versa,
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Granger (1969) suggests a definition of "causality" which is testable using
regression or correlation techniques. Granger defines simple causality such that
"x causes " if knowledge of past x reduces the variance of the errors in
forecasting y, beyond the variance of the errors which would be made from
knowledge of past y alone:

oz(yrlyt_l,...,xt_l,x,_2,...)<02(yllyt_l,...).

Granger also defines instantaneous causality, where current as well as past values
of x are used to predict yt.1 If y is related to current or lagged x, but not future
X, x is exogenous relative to y. (This parallels the concept of statistical
exogeneity which is assumed when least squares techniques are used to estimate
distributed lag or linear regression models.)? If x causes y and y causes x, then
there is feedback between the variables. If y does not cause x and x does not
cause ¥ (even instantaneously), the two series are unrelated.

Appendix A provides a more formal definition of causality in the context
of a system of linear stochastic difference equations. For the purpose of this
paper, consider the distributed lag model between current y and both current
and past x,

at B(Lx, +n,, (D

where B(L) is a polynomial in the lag operator L, which is defined such that
kat =X, - Sims (1972) proves that the disturbance n, in (1) is uncorrelated
with past, current, and future x if and only if "y does not cause x." [f a]l of the
coefficients of B(L) are equal to zero, "x does not cause y."

Before considering time series methods of testing for causal relationships,
it is worthwhile to consider the relationship of Granger causality to other

lPierce and Haugh (1977) prove that it is impossible to determine a unique direction of causality if
instantaneous causality exists.

2 However, this definition of exogeneity does not rule out the possibility of feedback between the variables,
since instantaneous causality could exist. Nelson (1978) illustrates this possibility and argues that
exogeneity, in the sense of being determined outside the system, cannot be tested using nonexperimental

data.
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concepts of causality. Wold (1954) advocates the notion of causal chains
between variables in order to specify a recursive structure for a system of
simultaneous equations. However, Basmann (1965) shows that it is impossible
to identify a unique direction of causality when the relationship between the
variables is strictly contemporaneous. In contrast, the Granger concept of
causality based on temporal ordering or predictability can be tested by
determining whether y, is related to past, current, or future values of x in
addition to past values of y.

In a physical system, the principle of post hoc ergo propter hoc can be
readily related to "causation." For example, if it rains and then the pond fills
up, it is easy to believe that the rain caused the pond to fill up. However, in
economic systems it is less clear that temporal ordering and causality should be
synonymous. Fconomic agents make decisions based on expectations of what
state of the world will occur in the future, and the process of forming expecta-
tions about the future can change the interpretation of Granger causality. The
concept of rational expectations (Muth, 1961) or efficient markets (Fama,
1970) suggests that .this problem will occur whenever one deals with a market
where arbitrage profits could be made if actual prices deviate from expected
prices in a systematic way.

For example, Fama (1975) has analyzed the relationship between the
monthly Consumer Price Index (CPI) inflation rate and the nominal return on a
one-month treasury bill, which is known at the beginning of the month. He
finds that the treasury bill rate predicts the subsequently observed inflation
rate. Subsequent work by Nelson and Schwert (1977) indicates that the treasury
bill rate causes the rate of inflation in the Granger sense, since the treasury bill
rate adds significant information beyond that contained in past inflation rates
for predicting inflation. However, this interpretation of the relationship
between interest rates and inflation is misleading. An alternative interpretation
of these empirical results is that the treasury bill rate contains an efficient
assessment of the expected inflation rate, so that interest rates adjust to
different levels of expected inflation over time. In this scenario, predictable
movements of inflation cause movements in the interest rate in the usual sense
of the word.

Thus, the Granger concept of causality based on temporal ordering will
not lead to sensible conclusions about directions of causation in many instances.
Zellner (1977, 1979) provides a valuable discussion of this and other problems
with temporal ordering as a definition of causality. Nevertheless, this definition
of causality provides a focus for empirical work designed to determine the
relationships between economic time series variables. For example, if there is
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feedback between y and x, usual regression techniques applied to one-way
distributed lag models would often yield inconsistent parameter estimates.?
Thus, tests of Granger causalily can be an important part of the analysis of
the specification of econometric models between time series variables.

HI. Some Exa_mplés

Sims (1972) uses seasonally adjusted quarterly data from 194769 to
test for unidirectional causality (exogeneity) in the relationships between
gross national product (GNP) and the nominal money supply defined in two
ways: (@) the monetary base (MB), which is currency plus reserves adjusted
for changes in reserve requirements, and (b) M1, which is currency plus demand
deposits. Sims estimates two-sided distributed lag equations:

8
o !
Ve =@t o Bix g tyzte,
i=-4

where Y, and X, are transformed values of GNP, MB, or M1 (regressions of both
GNP on money, and money on GNP are estimated), and z, represents a vector
of seasonal dummy variables and a time trend variable. Sims then uses F-tests to
determine the joint significance of the lead coefficients (5_4, C ,6_1) and the
lag coefficients (60 B ,68) from each of the regressions. Because Sims
recognizes the importance of having serially uncorrelated disturbances in his
regression, he uses the natural logarithms of all of his variables, and he uses the
autoregressive filter (1-0.75L)% = (1-1.5L + 0.5625L%) to transform each of
the variables. For example,

3lf {x"} is autocorrelated and the true relationship between y and x is a two-sided distributed lag,

m

= . .+
Y1 ar let-z 6t’

i=-k

then least squares estimators of the regression coefficients for the one-sided distributed lag,

m

Y= ar i=Eo Brr ity

-1
are biased and inconsistent because the disturbance, n= z ﬁfx' ;i T €, is correlated with the regressors.
k .

i=.
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»,=InGNP,- 1.5In GNP, | +0.5625In GNP, _,

is the transformed value of GNP. _

On the basis of [-tests, Sims (1972) concludes that although GNP is not
exogenous to money, there is "no evidence that appears to contradict the
common assumption that money can be treated as exogenous in a regression of
GNP on current and past money"” (p. 550). However, as a result of several types
of tests on the regression residuals, Sims notes that "there is room for doubt
about the accuracy of the F-tests on regression coefficients" (p. 549).

Indeed, Feige and Pearce (1974) reexamine Sims's tests using different
types of prefilters and note that Sims's results do not hold up under some choices
of transformations of the variables. In particular, when they analyze estimates
of the innovations of money and income, which are the residuals from univariate
ARIMA models for each of the variables, they cannot reject the hypothesis that
there is no relationship between money and income at usual significance levels.

Williams, Goodhart, and Gowland (1976) use similar data from the United
Kingdom for the 1958-71 period to test for causal relationships between money
and income. Using different transformations, including first differencing, they
find no strong noncontemporaneous relationships between money and income
in the U.K. In fact, the regression relationships between transformed money and
transformed income are so weak that Williams, Goodhart, and Gowland cannot
reject the hypothesis that all of the regression coefficients are zero at usual
significance levels. Thus, they cannot reject the null hypothesis that nominal
income is unrelated to the money supply.

Rutner (1975) analyzes the relationships between the monetary base and
M1 using spectral analysis and finds little relationship between these time
series after they have been transformed or filtered. He estimates a high order
autoregression for each variable and then takes the residuals from that regression
as his "detrended" series. Rutner finds no significant contemporaneous relation-
ship between the transformed money supply (M1 or M2) and the transformed
monetary base (adjusted or unadjusted for changes in reserve requirements).
However, spectral analysis of the transformed series indicates a statistically
significant long-run (low frequency) relationship between the transformed
series, with some indication that the base leads the money supply in the long
run. ,

Feige and Pearce (1976) examine the relationship between several defini-
tions of the money supply (M1, M2, or MB) and the price level as measured by
the Consumer Price Index (CPl) or the Wholesale Price Index (WPI) during the
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1953-71 period. They estimate ARIMA models for monthly and quarterly
versions of the variables and use the residuals from these models as estimates of
the innovations for the respective series. They perform two tests to determine
causal relationships based on the cross-correlations between the residuals from
the monetary variables and the residuals from the price variables. First, they
compute the correlation coefficients between the residuals from a price series,

and the residuals from a monetary series, a

Gye xt’

r (y=corr(a, .a_,_;).
ayax yt> xt-i

They compare each individual cross<correlation estimate with its asymptotic
standard error (which is 77!/2 under the null hypothesis of zero cross-
correlations), and they look for estimates which are more than two standard
.errors different from zero fori = 12,...,0,... ,12. Second, they use a joint
test developed by Haugh (1972) to test whether all of the cross-correlations
are zero.* On the basis of these test procedures, Feige and Pearce "could not
reject the hypothesis that the rate of inflation is causally independent of the
monetary aggregates. . .which appears to be in direct conflict with both popular
doctrine and a substantial body of published econometric literature” (p. 519).

Pierce (1977a) examines the causal relationships between a variety of
economic time series variables using weekly data from September, 1968 through
April, 1974, For example, using tests based on Haugh's S-statistic, he cannot
reject the hypothesis that demand deposits (DD) are unrelated to the 90-day
treasury bill rate (TB) at all leads and lags.

These examples, which highlight existing applications of time series
techniques to questions of causal relationships between economic variables,
indicate some of the puzzling and conflicting results which have been derived
using different methodologies. Since the procedure of analyzing the innova-
tions of different series has surprisingly failed to detect any substantial relation-
ship between economic variables such ‘as the money supply and nominal income
or the price level, the remainder of the paper investigates the properties of the
new time series methodologies.

4The statistic

M
- ny 2
5= Ti=zEM [’ayax(')]

has an asymptotic )(2 distribution with 2M + 1 deg:ees of freedom under the null hypothesis that all 2M+ 1
cross-correlations are zero. Note that S can be defined over any range of the cross<correlation function;
it does not have to be symmetric around lag zero. Appendix B discusses these test procedures further.
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IV. Time Series Methods for Analyzing Causality

On the basis of work by Haugh (1972, 1976) and Haugh and Box (1977),
Pierce and Haugh (1977) suggest a two-step procedure for implementing tests
of causality. First, each variable is transformed to have a constant unconditional
mean and variance over the sample period (possibly by using logarithmic and/or
differencing transformations of the raw data). For example, the rates of change
of many economic time series, the first differences of the natural logarithms,
are stationary in this sense. Then, univariate: autoregressive-moving average
(ARMA) models are estimated for the transformed variables®

oLy, =a,'+0, (L), ,
¢, (Lx,=a,"+6 (L)a,,, (2)

where ¢y(L) and ¢ (L) are finite autoregressive polynomials in the lag operator;
Hy(L) and 6 , (L) are finite moving average polynomials in the lag operator; and

a are each serially uncorrelated. Based on the univariate models for

yy :md X int(2), the unexpected part of y which could not be predicted on the
basis of its past history is a,, Similarly,a, , is the part of x, which could not be
predicted on the basis of its past history. The disturbances a,, and a_, are
referred to in the time series literature as the "innovations" of the ARMA
processes in (2).

Note that the current value of a stationary ARMA process can always be

represented as a weighted sum of the current and past innovations

and a,

where the W, weights are functions of the autoregressive and moving average
parameters. The "systematic” or predictable part of the ARMA process is also a
weighted sum of the past innovations

5Box and Jenkins (1976) and Nelson (1973) discuss procedures for specifying and estimating univariate
ARMA models,
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Thus, analyzing the innovations of the time series does not eliminate or throw
away the systematic part of the variable.
The second step in the Pierce-Haugh causality test is to examine the

cross-correlations between a , and past, current, and future values ofax , which

is referred to as the cross-coyrtrelation function between a, and a, (as a function
of lag i). Pierce and Haugh (1977) prove that the innovations, a, and a, , yield
conclusions about causality identical to those about the transformed variables,
y and x, in (2). For example, if "ax causes a,, (but not instantaneously)" and
”ay does not cause a,," then "x causes y (but not instantaneously)" and "y
does not cause x." Nevertheless, the distributed lag model between the innova-
tions series, {ayt} and {a, }, can be substantially different from the distributed
lag model between the original variables,{ y,} and {x,} .

For example, consider the distributed lag model in (1) where y does not
cause x, but x causes y, ‘

ye=atplx, tn, .,
where BL)=B, +B,L +8,L% +...

is a polynomial in the lag operator, and 5, is a stationary disturbance which may
be autocorrelated. Assume that , follows an ARMA process,

oy (Lm, =0y L, ,

where {e,} is "white noise," serially independent, identically distributed

variables with mean zero and constant variance, oez. The univariate ARMA

representation of,\" in (2) can be substituted into (1) to yield



0,(L) 6, (L)

a +
6.(L) *

v, = a +BL) - D
N

€ .

Further substitution of the ARMA representation of y, from (2) yields

Gy(L) 6. (L) 6, (L)
a,, =B(L) a,,* €,
¢y(L) ¢, (L) o5 (L)
¢, (L) 6,.(L) ¢, (L) 6,(L)
or a,, = 6(L)-y a2 2 €, , 4 (3)

xt
0,(L) ¢,(L) 0,(L) (L)

which is simply a distributed lag model for a
values of 2, with ARMA disturbances,

» in terms of current and lagged

a,, = vilya,, +w(L)e, . (4)

Thus, if there is a one-sided distributed lag model between y and x such as (1),
there is a corresponding one-sided distributed lag model between the innovations
for the univariate ARMA models, a, and a_. We can test for "causal” relation-
ships between time series variables using either the original variables or the
innovations,

However, the distributed lag model between the innovations in (3) can be
substantially different from the distributed lag model between the original
variables in (1). The coefficients between y and x,5(L), are generally different
from the coefficients between a, and a_, v(L). The contemporaneous coefficient
is the same (8, = v,), but it is necessary to consider the form of the ARMA
models for y and x in order to determine the relationship between the lagged
coefficients in 8(L) and v(L).

The autocorrelation properties of the disturbances in (3) are also generally
different from the autocorrelations of the disturbances of the original model
(1). The ARMA models for y and x make a, and a serially uncorrelated. Given
the usual assumption that ¢  and € are independent, the distributed lag
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6,(L) 0,(L)
0,(L) ¢,(L)
6,(L) 0y(L)

6,(L) oy(L)

a,, is just the sum of two independent ARMA processes which must cancel

each other to produce a serially uncorrelated series. For example, suppose that

v, and v, are nonzero, but all other v; are equal to zero,

polynomial, v(L) = (L) , places restrictions on the ARMA model

for the disturbances in (4), w(L) =

. This is easy to see since

Since a,, and a,, are serially uncorrelated by construction, N, must follow
a first order moving average process

N‘—e,-Gle,_l .

The magnitude of 6, depends on the ratio V1/Vo and the relative variances
ofa , ande,.®

A few special cases should . illustrate the differences between the
distributed lag model for the original variables in (1) and the distributed lag
model for the innovations in (3).

Case 1: Suppose that y and x have exactly the same ARMA
representations, ¢y(L) = ¢ (L) and ()y(L) =6 (L). In this
special case, the distributed lag model between the innova-
tions is exactly the same as the distributed lag model between
the original variables,

6,(L) 6,(L)

6,(L) ¢, (L)

L) = B(L)

=B(L).

6Box and Jenkins (1976, pp. 121-25) and Haugh and Box (1977, p. 126) discuss the relationships between
v(L) and (L) which are implied by the fact that ayt’ a.p and Et are all serially uncorrelated in (4).

64



However, the autocorrelation structure of the disturbances of
the innovations model,

6,(L) 0, (L)
6,) oyD) "

is generally different from the autocorrelation structure of
the disturbances of the original model.

Case 2. Suppose thereisastrictly contemporaneousrelation-
ship between y, and x, in (1), B, # 0 and B; = 0 for
i=1,2,....In general, the distributed lag coefficients
between the innovations are nonzero at all lags, unless the
ARMA models for ¥ and x are identical. For example,
suppose that y, follows the firstorder AR process with
qby(L) = (1 - 0.9L) and By(L) = 1, and X, is serially
uncorrelated, so ¢, (L)= 0x (L)=1.Then

V(L) = B,6,(L).

By matching coefficients on both sides of equation (5), we
can solve for the coefficients of v(L):

<
|
'
o
O
=)
)

y, =0, i>1.

Note that if either Oy(L) or ¢>x(L) had been a polynomial
of order greater than zero, the coefficients of v(L) would
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generally be nonzero at all lags. Also, note that the steady-

oo
state gain (total multiplier)? between x and yis X B;=8,,
i=0

while the gain between a, and a, is only one tenth as large,

i i

oo
=20 v, =8,-0.98, =0.18,.

In this case, the relationship between y, and x, is only
contemporaneous, so there is no easy way to identify a
unique direction of causality based on equation (1). Never-
theless, there is evidence that x causes y from the relation-
ship between a, anda,, since v, is nonzero.

The disturbance term in the model for the original
variables must follow an ARMA process, since y is-serially
correlated, while x is not. The disturbance in the model
for the innovations must follow a first order moving average
process.

Case 3: Suppose there is a Koyck distributed lag relation-
ship between y and x,

B

Y, = at th+77t,

; |
where 1——‘36—L =B, (1+8L+87 L2+8% L+, . ), so the distributed

lag coefficients between x and y decay at the geometric
rate: ﬁj = [306f. For example, suppose 6 = 0.9 and B, = 0.1,
so that the steady-state gain between y and x is 1.0. As in
Case 2, suppose that Y, follows the first order AR process
with ¢y (L) = (1 -0.9L) and Hy(L) =1, and x, is serially
uncorrelated, so o, Ly = 6x (L) = 1. In this case, the relation-
ship between a, and a, is strictly contemporaneous:

v(L) = B(L)p, (L) = (1-0.9L)=6, .

_°
(1-0.9L)

7The steady state gain can be thought of as the long-tun change in the level of y if x is set equal to one in
all future periods. It represents the cumulative effect on all future values of y of the current value of X
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Thus, even though it appears that x causes y based on the
one-sided distributed lag model between y and x, the
relationship between a, and a_ is strictly contemporaneous,
so there is only instantaneous causality between y and x
in this case. As in Case 2, the gain between a, and a, is only

one-tenth as large as the gain between x and y.

These three cases highlight the differences between the distributed lag
models for the original variables in (1) and for the innovations in (3). Case 1,
where the ARMA models for y and x are identical, represents the only case
where the distributed lag coefficients are the same at all lags for the two models.
The last two cases illustrate the difficulty of determining anything about simple
causality from the distributed lag model for the original variables. In Case 2,
there is only a contemporaneous relationship between y and x, but there is a
lagged causal relationship between the innovations, current a, and past a . On
the other hand, Case 3 involves a distributed lag of y on x, but only a

contemporaneous relationship between a, and a_, so there is no evidence of

simple causality (since lagged values of x ora, al:ne cannot reduce the variance
of the error in predicting y,).®

Since the innovations [ax ’} are serially uncorrelated, the distributed
lag caoefficients between a, and a, are proportional to the cross-correlation

coefficients between a,, and a These illustrations indicate that the size and

pattern of the cross—cc})lr’relat:ior’isr {)etween the innovations should be considered
in relation to the implied values of the distributed lag ¢oefficients for the
relationship between the original variables. In the next section, two examples
are provided to illustrate the importance of analyzing the implied coefficients

of B(L) in (1) as an integral part of the analysis of the innovations series.
V. Lack of Relationships?

A. Inflation and the Money Supply

As mentioned in Section I11, Feige and Pearce {1976) analyze the relation-
ships between monetary growth rates and inflation using the time series
techniques described in the previous section and cannot reject the hypothesis
that these variables are unrelated. Such a finding, if true, could have profound
implications for the study of monetary economics. However, the inability to
reject the null hypothesis does not confirm the hypothesis that the inflation

8l’ierce (1975, pp. 355-56); Nelson (1975a, p. 342); and Pierce and Haugh (1977, pp. 274-75) note that
this result occurs whenever /3(L) X, has the same stochastic structure as the disturbance 7, in (1).
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rate is unrelated to the growth rate of the money supply. It is necessary to
consider the power- of the test, the probability that the null hypothesis is
rejected when it is false, before concluding that there is no relationship between
inflation and monetary growth. _

In order to analyze the Feige-Pearce results, monthly data from July,
1953-June, 1971 are used to estimate ARIMA models for the CPI inflation
rate (not seasonally adjusted),

(1-L*)(1 -L)p,= 0.30x 107 + (1-0.94L%)(1 -O;88L)ay,

(1.80x 107) ©.0n) (0.03) )

S(a‘y) = 0.00194 0¥ (10)=13.1,

and for the rate of growth of the monetary base (not seasonally adjusted or
adjusted for changes in reserve requirements),

(1-L12)mt = 0.37x 10° + (1-0.89L'?*)a_,

(0.07x 10%)  (0.02) (7

S,) = 0.00448  Q*(11)= 167,

where standard errors are in parentheses, S(a) is the standard deviation of the
residuals, and Q°(K) is the Box-Pierce (1970) statistic for 12 lags of the residual
autocorrelation function which has a x; distribution in large samples under the
hypothesis that all residual autocorrelations are zero. These ARIMA models are
of the same form as the models used by Feige and Pearce, although the
parameter estimates are somewhat different.” For the purposes of this illustra-
tion, the important thing to note is that the residuals,ay and a, , are not serially
correlated.

Table 1 presents estimates of the cross<orrelations between the price
residuals, a,, and the monetary base residuals, Ay yoiv fori=-12,...,0,...,12.
None of the estimated cross-correlations is more than two standard errors
from zero, and there is no obvious pattern in the cross-correlation function.

9The differences may be attributable to several things. The estimates in (6) and (7) are obtained from an
unconditional maximum likelihood procedure (see Box and Jenkins, 1976, pp. 212-20), whereas the
Feige-Pearce estimates may be conditional on the initial conditions of the ARIMA process (see Box and
Jenkins, 1976, pp. 209-12). Also, Feige and Pearce use monetary base data from the Federal Reserve
Bulletin, while the data used in this paper are from the Federal Reserve Bank of St. Louis.
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Table 2 presents Haugh's S-statistic for various combinations of leads and
lags of the cross~correlation function.! © None of these test statistics would reject
the hypothesis that the monetary base and the CPI are unrelated at usual
significance levels. In fact, all of the S-statistics are near their mean values under
the null hypothesis of no relationship.

Although the cross-correlations between residuals in Table 1 are somewhat
different from the estimates plotted by Feige and Pearce (1976, p. 513), the test
results in Tables 1 and 2 lead to the same disturbing conclusion reached by
Feige and Pearce: the CPI inflation rate, p, seems to be unrelated to the growth
rate of the monetary base, m. However, the distributed lag model between p
and m which is implied by the cross-correlations of the residuals in Table 1 gives
a different impression of the relationship between the monetary base and the
CPL :
Column (2) of Table 3 presents estimates of the distributed lag
coefficients, v;, between the innovations,a,,, anda_, ;, whichare proportionately
smaller than the cross-correlations in Table 1. Column (3) of Table 3 contains
the coefficients of the distributed lag model between p and m,

—-

2
pp = 2

i ﬁimt-i+nt’

V]

which are implied by the ARIMA models for p and m and the estimates of v,
in column (2). The footnotes to Table 3 and Appendix C describe the details
of the calculations.

Taken at face value, the numbers in column (3) say that a 1 percent
increase in the growth rate of the monetary base has a negligible effect on the
current inflation rate, but the current growth rate of the monetary base increases
the inflation rate in succeeding months by about 0.04 percent per month. Thus,
a 1 percent increase in m leads to a 0.52 percent increase in p after one year.
Such a finding is quite consistent with accepted beliefs about the time lag
between a change in the growth rate of the money supply and a sub’sequent
change in the inflation rate. However, when one realizes that most of the
coefficients in column (2) have standard errors which are larger than the
estimates, it is apparent that the set of implied values of §; in column (3) is
fortuitously in conformance with previous findings. In fact, a very wide range
of patterns of §; is consistent with the cross-correlations of the innovations in
Table 1. Thus, even if knowledge of past monetary growth rates does not

10Note that the asymptotic distribution of S is X2 only in the case where all cross<orrelations are zera,
whether they are included in the computation of S or not. Pierce (1977a, p. 15), Sims (1977b, p. 24),
Pierce (19770, p. 25), and Pierce and Haugh (1977, p. 284) all discuss this problem.
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TABLE |

Cross-Correlations between the Residuals for the °
Consumer Price Index and the Monetary Base

Lag, i Con-(ay Ati Lag, i Corr(a 'y, P t-i)
12 0.06 -1 0.07
11 0.06 -2 -0.11
10 0.02 -3 0.00

9 0.03 -4 0.01
8 0.00 -5 0.13
7 -0.03 -6 -0.08
6 -0.01 -7 -0.03
5 0.11 -8 -0.11
4 0.13 -9 0.03
3 0.08 -10 0.07
2 0.07 -11 -0.07
1 0.09 -12 0.03
0 0.00

Note: Based on data from July, 1953 to June,1971. The large sample standard error for each estimate is
0.07, under the null hypothesis that the series are unrelated.

TABLE 2

Tests of the Lack of Relationship
between Monetary Growth and the Inflation Rate

M
- . Ny 2
S=T°* X [ra a 1
i=L rx
L M Degrees of N
Freedom

Feedback

-24 24 49 46.7

- 12 12 25 264
Xx causes y

1 24 24 275

1 12 12 139
¥y causes x

-24 -1 24 19.2

-12 -1 12 126

Note: Tests based on the cross-correlations between the residuals from the ARIMA model for the growth
rate of the monetary base, a., and the residuals from the ARIMA model for the inflation rate of the CPI,

a.
y

70



TABLE 3

Distributed Lag Model between the CPI and the Monetary Base
Implied by Cross<Correlations of the Innovations

Lag i Estimates of Distributed * Implied Distributed T Cumulative
Lag Coefficients for Lag Coefficients for Sum of B‘,
Innov'?tions, Original Variables, i
v, 8. Z 5
i i
k=0

¢y @) 3) @

0 0.001 0.001 0.001

1 0.041 0.041 0.041

2 0.028 0.033 0.074

3 0.033 0.041 0.115

4 0.058 0.070 0.186

5 0.047 0.069 0.255

6 - 0.006 0.022 . 0.277

7 -0.012 0.015 0.292

8 0.001 0.029 0.320

9 0.011 0.041 0.362
10 0.009 0.037 0.399
11 0.026 0.056 0.455
12 0.026 0.060 0.515

v = ray“x ()3 S(ay)/S(ax), where S(ay) and S(ax) are the estimates of the standard deviations of ay and

a, from equations (6) and (7).
Tlmplied values of 8 ; re compu ted from the estimates of » i using the relationship

0w o)

Bwy =v) —
0 0w

Based on the time seties models for the CPI and the monetary base in equations (6) and (7),

(1-0.88L) (1-0.94L%) a-11%
gwy =v) { } {

-1y a-1h (1- 089212y

The § . coefficients can be obtained by matching coefficients of the polynomials on each side of the
equation. Appendix C contains some representative calculations.
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provide a substantial improvement in predictions of future inflation rates, it is
not appropriate to assume that the series are literally unrelated. Perhaps more
conventional regression techniques applied to the analysis of the original data,
p and m, can provide more powerful tests of specific hypotheses of interest to
monetary economists.!?

B. Demand Deposits and the Treasury Bill Rate

As mentioned in Section IlI, Pierce (1977a) cannot reject the hypothesis
that demand deposits, DD, are unrelated to the 90-day treasury bill rate, TB,
at éll leads and lags using the time series techniques described in Section IV.
Pierce does not report the cross-correlations between the innovations of these
series, but he does report the ARIMA models used to construct the innovations
series. Table 4 presents three hypothetical sets of coefficients relating demand
deposits to current and lagged values of the treasury bill rate on a weekly basis,

II[\4\‘>

DDt=a+

BiIB,_;*m,,

i=0

along with the coefficients of the distributed lag models between the innova-
tions of DD and TB,

Gy = T v N, ®)

which are implied by the ARIMA models Pierce reports. Even when the relation-
ship between DD and TB is strictly contemporaneous in column (1) of Table 4,
the distributed lag coefficients between the innovations are small, erratic, and
spread over time. The cumulative effects through ten lags for the innovations
are less than half of the steady-tate gain between TB and DD. The steady-
state gain between a, and a, is only one-third of the gain between the original
variables.! 2

11Plosser (1976, pp. 106-11) uses similar data, including the growth rate of industrial production as an
additional regressor, and finds a more significant distributed lag model between 0 and m which has
coefficients similar to those in column (3) of Table 3.

12’l“he steady-state gain between a, and g, can be determined by evaluating the formula

o0 0.

) = B
6,0 ¢

with L= 1.
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TABLE 4

Distributed Lag Coefficients between Demand Deposits
and the Treasury Bill Rate

* * *
Lagi 6,’ V,T Bi ”iT ﬁi V,-T
1) ?) 3)
0 1.0 1.0 0.50 0.50 0.10 0.10
1 0.0 053 0.30 0.04 0.10 0.05
2 0.0 0.12 0.20 0.10 0.10 0.06
3 0.0 -021 0.0 -0.17 0.10 0.04
4 0.0 -0.04 0.0 - 0.06 0.10 0.03
5 0.0 -0.34 0.0 -0.22 0.10 0.00
6 0.0 051 0.0 0.15 0.10 0.05
7 00 018 0.0 001 0.10 0.03
8 0.0 0.19 0.0 0.14 0.10 0.05
9 0.0 0,09 0.0 -0.02 0.10 0.04
Sum of the 1.0 0.44 1.0 045 10 0.46
Coefficients

Note: Pierce (1977a) uses weekly data from September, 1968 through April 1974 to estimate the ARIMA
model,

(1-L) TB, = (1-0.30L - O.IOL5 + 0.12L6)axr

for the 90-day treasury bill rate, and the ARIMA model,

(1-1)DD,= (1+0.23L +0.18L% + 0.182% + 03225 . 0.13L5 + 016116

38

2032022 + 017234 + 01638 + 0.18L45)ayt

for demand deposits. A periodic seasonal mean is subtracted out of each variable prior to estimating the
ARIMA models,

-
Coefficients for the hypothethical distributed lag model for the original variables,

9
DD, = a+ z ﬁiTBt_i+T]t.

i=

TCoef ficients for the distributed lag model for the innovations,

implied by the ARIMA models for TB, and DD, and the assumed values of 3 o i} e »39.
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Columns (2) and (3) in Table 4 show distributed lag models between
DD and TB which are spread over 3 and 10 weeks with the same total impact.
It is not difficult to believe that a change in the treasury bill rate would lead to
changes in demand deposits for several subsequent weeks, so columns (2) and (3)
probably present a more realistic set of assumptions about (L) than column (1).
The implied coefficients of (8), the distributed lag model for the innovations,
contained in columns (2) and (3) are small and erratic with no discernible
pattern, and the cross<orrelations of the innovations would be proportional to
the v; coefficients.

These calculations are presented to illustrate the difficulty of detecting
relationships between DD and TB based on the cross-correlations between the
innovations of these series. As with the Feige and Pearce (1976) example, the
illustrative calculations in Table 4 show that quite reasonable relationships
between the original variables can be difficult to detect from the cross-
correlations of the innovations. Thus, failure to reject the hypothesis that the
innovations series are unrelated at conventional significance levels should not be
the end of the analysis. The power of such procedures against plausible
alternative hypotheses should also be investigated.

V1. An Application of Alternative Test Procedures:
Interest Rates and Inflation

As a final illustration of the weakness of the Pierce-Haugh tests against
specific economic hypotheses, the time series techniques of Section 1V are
applied to Fama's (1975) model of short-term interest rates as predictors of
inflation. lrving Fisher (1930) noted that the nominal interest rate, R,, can
always be viewed as the sum of the expected inflation rate, £(p,), and the
expected real rate of interest, E(r‘). The nominal interest rate on a default-
free bond is known at the beginning of the period, but the.inflation rate and real
interest rate are not realized until the end of the period. Fama hypothesizes
that the expected real interest rate on short-term U.S. treasury bills was
constant over the 1953-71 period, so the expected inflation rate is the nominal
interest rate minus the constant expected real rate,

E(p)=R,-E(r). o)
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Fama tests his model using the regression model
p,=atfR, te, (10)

where (9) implies that 8 = 1 and a = -E(r) in (10). Using monthly data on one-
month treasury bill yields and the CPI inflation rate for the January, 1953-
July, 1971 period, ?3 = 0.98 with a standard error of 0.10, and the residuals
are not substantially autocorrelated. Therefore, Fama concludes that the data
support his model as expressed in (9).

A. Pierce-Haugh Tests

In order to carry out the Pierce-Haugh tests, it is necessary to construct
ARIMA models for the inflation rate and the interest rate. Following the
procedures of Box and Jenkins (1976), the CPI inflation rate from February,
1954 to July, 1971 is modeled as a multiplicative seasonal ARIMA process,

(1-L) (1-L'?)p, =(1-0.87L) (1 -O.92L‘2)ayt,

0.03)  (0.02) (D

S(a,)=0.0019 0'(10)=13.9,

where standard errors are in parentheses under the estimates of the ordinary and
seasonal moving average parameters. The Box-Pierce (1970) statistic for 12 lags
of the residual autocorrelation function indicates no model inadequacies.

The ARIMA model for the one-month treasury bill rate is of similar form,

(1-LY(1-L'*)R, =(1-0.27L + 0.20L2)(1 -0.90L'% )
(0.07) (0.07) (0.02)

Xt (12)

S(a, )= 0.0003 0" (9)=20.1.

Although the Box-Pierce statistic for the residual autocorrelations of (12) is
large, the large autocorrelations occur at lags which are difficult to believe are
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important, so (12) is accepted as an adequate univariate time series model for
the interest rate.!®

Column (2) of Table 5 contains the cross-correlations of a,, with a_,
for i = 0,1, ... ,12, where a, and a_ are the residuals from (11) and (12)
respectively. None of these cross-correlation estimates is more than 2 standard
errors different from zero, and Haugh's §-statistic for these 13 lags is 15.3,
which is just slightly larger than the expected value of the statistic under the
hypothesis that the series are unrelated. Thus, the crosscorrelations of the
innovations suggest that the inflation rate is unrelated to the interest rate.

Column (4) of Table 5 contains the values of the distributed lag
coefficients, ;. between the inflation rate and current and lagged interest
rates. These coefficients are derived from the estimates of v, in column (3)

and the relationship

(1-0.87L)(1-0.92L'?) }

BL) = wL) {(1-0.27L+0.20L2)(1-0-90L”)

Although the implied contemporaneous coefficient, §,, is only 0.32, the
cumulative sum of the coefficients in column (5) is close to 1. This implies
that a 1 percent increase in the treasury bill rate is associated with a 1 percent
increase in the inflation rate within a few months.

As an indication that the cross<correlations of the innovations in column
(2) of Table 5 are not strong evidence against Fama's hypothesis, the cross-
correlations of the innovations which are implied by Fama's model are listed in
column (6). First, the relationship

(1-0.27L +0.20L%)(1-0.90L'?)
(1-0.87L)(1-0.92L'?)

3

vL) = B,

where 30 = 1, is used to solve for the implied distributed lag coefficients between
the innovations, v,. Then, the relationship

Sta,.)
r (i)y=v

ay a, i S((ly )

13T!le time series models in (11) and (12) are the same ones selected by Plosser (1976) after considering
a wide variety of model forms. Alternative models yielded similar results in the Pierce-Haugh tests of
relationships between interest rates and inflation.

71



is used to solve for the implied cross<orrelations of the innovations. Because
the cross-correlations implied by Fama's model in column (6) are small and
close to the actual estimates in column (2), the Pierce-Haugh tests do not
provide strong evidence against Fama's hypothesis.

B. Parametric Tests of Causality

As mentioned in Section II, Nelson and Schwert (1977) take a more
direct approach to testing whether the interest rate contains predictive informa-
tion about inflation beyond that contained in past inflation rates. Nelson and
Schwert embed the interest rate as an additional variable in the time series
model for inflation and find that the interest rate does contain significant
incremental information. For example, the model

(I-L”)(l-L)p,= 0.67(1-le)(l-L)Rt+(1-0.68L12)(1-0.74L)et
(0.33) (0.05) (0.05) (13)

is a generalization of both Fama's model (10) and the ARIMA model for infla-
tion (11). If the coefficient of (1-L12) (1 -L)R, is zero, (13) specializes to the
ARIMA model, and the interest rate does not "cause" inflation in Granger's
sense. On the other hand, if both the ordinary and seasonal moving average
parameters are equal to one, (13) specializes to Fama's model where all of the
information about inflation contained in past inflation is subsumed by the
interest rate.!* Both extreme cases are rejected by the data at usual significance
levels. Thus, the test against the specific alternative hypothesis implied by
Fama's model can reject the null hypothesis that tiie variables are unrelated.
The test in (13) is more powerful than the Pierce-Haugh test against Fama's
alternative hypothesis. All of the diagnostic checks recommended by Box
and Jenkins (1976, ch. 11) indicate that (13) is an adequate representation of
the relationship between inflation and interest rates. v

14Note that 2 conventional f-test of the hypothesis that a moving average parameter equals one cannot be
based on the Student-t distribution since such a parameter is on the boundary of the admissible parameter
space (i.e., the moving average process is not invertible when the MA parameter equals one). Plosser and
Schwert (1977) report sampling experiments which can be used as a basis for this test.
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VII. Summary and Conclusions

A. Advantages of the Time Series Techniques

The primary motivation for adopting the Pierce-Haugh method is that
application of conventional regression techniques to untransformed economic
time series variables can often result in "spurious regressions.” If both {y,} and
{xt} are serially correlated or nonstationary through time, which is often the
case with aggregate economic data, regression equations which are estimated
using least squares can often yield spuriously "significant” results because of
autocorrelated disturbances. Yule (1926) and Granger and Newbold (1974)
illustrate the seriousness of this problem. In order to test causality hypotheses
using conventional regression procedures, it is important that the disturbances
of the regression equation be serially independent, identically distributed
random variables. This is often an inappropriate assumption when dealing with
the levels of macroeconomic time series variables. Plosser and Schwert (1978)
discuss this argument in detail and provide some examples.

A secondary motivation for using the Pierce-Haugh procedure is that
estimates of the regression coefficients v; are unbiased even if some significant
lagged values of a, are omitted from the estimated regression equation. Unbiased
regression coefficients result from the fact that the sequence {ax I} is serially
uncorrelated by construction. On the other hand, omitted lagged values of the
original regressor x generally cause the estimates of the regression coefficients
ﬁ,. to be biased, because x, is correlated with the omitted lagged values, X, &
Thus, the problem of specifying the length or form of the distributed lag model
is less serious when using the serially uncorrelated innovations.

In summary, the Pierce-Haugh technique is relatively simple to apply
in situations where the relationship between two time series variables is not
well specified a priori. The Pierce-Haugh methodology reduces the problems of
model specification required to perform tests of causality hypotheses. However,
the increased flexibility does not come without sacrifices in other dimensions;
in particular, the power of the Pierce-Haugh tests is likely to be low, relative to
other test procedures, against specific alternative hypotheses.

B. Disadvaniages of the Time Series Techniques

Even if one wishes to analyze the relationship between the innovations of
two variables, the cross-correlation tests advocated by Pierce and Haugh (1977)
may be less accurate than comparable statistics derived from the multiple
regression
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M
a, = X va +N, . (14)

Yt i=0 I"xt-1 t

For example, the F-statistic which tests the significance of the regression (14)
is proportional to Haugh's S-statistic divided by (1 -R?), where R? is the co-
efficient of determination from (14). (M + 1)*F and S have identical asymptotic
x? distributions under the null hypothesis that all of the distributed lag co-
efficients v; are zero. However, because (M+1)*F is always greater than or equal
to S, the critical regions for these tests are not identical when asymptotic results
are used. Thus, the null hypothesis of no relationship will be rejected by the
F-test but not by the S-statistic. It is not clear which of these tests has the
correct significance level in finite samples. Appendix B derives the algebraic
relationship between the cross-correlation tests and regression tests in detail.

Of course, if the distributed lag model between a, and a, can be
specialized, reducing the number of parameters to be estimated, more
powerful tests can be constructed. For example, if (L) can be modeled as a
Koyck distributed lag,

Yo

L =
W= 15T

it is only necessary to estimate two parameters, v, and 8, in order to specify
all of the v, coefficients. Each v, does not have to be estimated as a separate
coefficient in the multiple regression (14), as it does when the Koyck restriction
is not imposed on the coefficients.

All of the preceding discussion assumes that the innovationsa , and 4,

are directly observable (or, equivalently, that we know the form andy;;arameter
values of the ARIMA models for Y, and x, a priori). In practice, it is necessary
to identify (specify) the form of the ARIMA model for each variable based on
sample autocorrelations and partial autocorrelations (cf. Box and Jenkins,
1976), and then to estimate the parameters of the ARIMA models using the
same sample of data. Thus, the residuals from the ARIMA models,&y, and axt,
are estimatei of the Aunobservable innovations, a,, and a,,. Haugh (1972)
proves that a,, and a,, are consistent estimates of the innovations, so the
S-statistic has the same asymptotic distribution under the hypothesis that the
series are unrelated when the residuals are used in place of the true innovations.
Nevertheless, Pierce (1977a) recognizes that the use of residuals to estimate the
coefficients of (14) is analogous to the "errors-in-variables" problem:
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It is well known that measurement error biases estimated
regression coefficients toward zero when it occurs in the
independent variable and inflates their standard errors when
it occurs in the dependent variables. These influences would
be expected to exert a like effect on the sample residual
cross correlations as well. (p. 20)

Thus, tests of the hypothesis that innovations series are uncorrelated with each
other at all leads and lags are more likely to accept the null hypothesis of no
correlation in finite samples when residuals are used in place of the unobservable
innovations.

If the original variables, y, and x,, are measured with error, the measure-
ment errors will generally have a different influence on the estimators of the
relationship between the innovations than on the estimators of the relationship
between the original variables. Although it is impossible to say a priori, in some
plausible cases the least squares estimators of the coefficients of »(L) will be
biased towards zero more than the least squares estimators of the coefficients
of B(L) (see Plosser and Schwert, 1978, for some examples). Thus, if the
original variables are measured with random errors, causality tests based on the
estimated innovations series could fail to detect relationships that would be
detected using the untransformed data.

Finally, the relative power of the Pierce-Haugh test in comparison with
other tests that two variables are unrelated, such as Sims's (1972) test based on
the regression of y, on past and future x, is unknown in general. It is very
important that the regression disturbances are serially uncorrelated for Sims's
test to be valid, but Hsiao (1977) argues that Sims's test, as well as some other
tests, are likely to be more powerful than the Pierce-Haugh test if this condition
is satisfied.

C. Summary

The merits of any statistical procedure must be considered in the context
of the model and data which are available. In situations where there is no well-
formed model to test, a general procedure which is not highly susceptible to
specification errors, such as the Pierce-Haugh methodology, may be the best
alternative. On the other hand, if one has a model about the relationship
between two variables, such as the rate of inflation and the rate of growth in
the money supply, the structure of the model will suggest a more powerful
test of his hypothesis.
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This paper has described and illustrated the new time series methodology
for analyzing relationships between economic variables. Several important facts
should be considered before adopting this new methodology to test for "causal”
relationships between variables. First, the distributed lag coefficients between
the innovations can be very different in pattern and magnitude from the
distributed lag coefficients between the original variables, depending on the form
of the ARIMA models for the variables. Second, statistical tests based on
residuals from estimated ARIMA models may accept the null hypothesis of
series independence too frequently. Third, existing statistical tests based on the
sample cross-correlations between residual series may have low power against
plausible alternative hypotheses, especially when short measurement intervals,
such as a week or a month, are used.

Given these qualifications, Feige and Pearce's (1976) inability to reject
the hypothesis that the rate of inflation is independent of the rate of growth
of monetary aggregates or Pierce's (1977a) inability to reject the hypothesis
that demand deposits are unrelated to the treasury bill rate should not be
alarming. This paper does suggest that future analyses using the Pierce-Haugh
methodology concentrate more on the relationship between the model for the
innovations and the model for the original variables.

Finally, the semantic distinction between "causality"” and "incremental
predictability” should be emphasized. Economists are clearly interested in
cause-effect relationships for the purpose of policy formulation; the effect on
the inflation rate caused by a change in the rate of monetary growth is an
example. On the other hand, forecasters, such as Pierce (1977a), have a
legitimate interest in finding the best predictive model for economic variables.
All of the variety of tests of Granger causality are clearly applicable in the
latter context, but they may be misleading in the former context, because
economic agents make decisions based on expectations about future events.
Therefore, in the interests of clarity, future tests of Granger causality ought to
be called tests of "incremental predictive content."
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Appendix A
Representations of Causality

Suppose that {y} and {x} follow a covariance-stationary bivariate linear
stochastic process,

e Ky by (L) by, (L)) [Tuyy
= + ) (15)
xt — #x ._b2 1 (L) b22(1‘) uzt

where My, and p are the unconditional means of y and x, and b1 . L), b1 ) ),
b, (L), and b, , (L) are all polynomials in the lag operator L, which is defined
such that: L"xt = X, _4- The disturbances, _u_t' = [u” uzt], have mean zero,
E(u,) = 0, variances equal to one, and contemporaneous covariance equal to
Z€ero, E(g’g") = J, and they are serially uncorrelated within and between series,
E(u,g‘”') = 0 for s # 0.3 Equation (15) is a moving average (MA) representa-
tion of the relationship between y and x. Sims (1972) proved that "x does not
cause y" if and only if either b (L) or b, ,(L)is zero or b (L) is proportional
to b1 5 (L) in equation (15).

Granger's (1969) proof was expressed in terms of the autoregressive (AR)
form of the bivariate process,' ®

Cll(L) C12(L) yt al ult
= + , (16)

czl(L) c“(L)_ X, a, u,,

where @, and a, are constant terms. Granger proved that "x does not cause
y" if and only if ¢, (L) =0 in equation (16).

Finally, Sims (1972) proved that y, can be expressed as a one-sided
distributed lag function of current and past x,

Yy, = atpB(l)x, +n,,

1 5There are many ways to parameterize a bivariate model such as equation (15). I have adopted Sims’s
(1972) specification that u, and u,, are independent *‘white noise” series with unit variance for

convenience. Pierce and Haugh (1977) discuss different parameterizations of this model in detail.

léHere Tassume that processes have both MA and AR representations. See Box and Jenkins (1976) fora
discussion of stationarity and invertibility in the context of univariate processes.
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with a disturbance n, which is uncorrelated with past or future x if and only if
"y does not cause x." Note that the disturbance n, can be serially correlated.
All three of these representations of causality are equivalent to the definition
that "x causes y" if the variance of y, conditional on past y and past x is less
than the variance of y, conditional on past y alone:

PO X <@y, )

Thus, Granger causality exists if information about x provides more precise
predictions about future movements of y than could be made by knowing just
the past history of y. :
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Appendix B
Relationship Between Cross-Correlation Tests and Regression Tests

Suppose that two white noise series {ay t} and {ax z} are related through
the one-sided distributed lag model,

a,,= & va.,.,.tn,, amn

where M is a finite integer and n, is an autoregressive-moving average distur-
bance.!”? Since {a } is serially uncorrelated, the least squares estimators of the
regression coefflclents, v, from the multiple regression (17) are identical to the
estimators obtained from the sequence of simple regressions,

a,. =va, . .te i=0,1,.. .M, (18)

vt Ixt-i it?

The least squares estimator, 1'3,., is proportional to the estimator of the cross-

correlation coefficient betweena, anda,,

Sa,)

S(a,) ’

. (D) = (19)

where S(a, )/S(ay) is the ratio of the sample standard deviations of a_ and a,.
Box and Jenkins (1976, pp. 376-77) note that when a, and a, are
uncorrelated at all lags, '

VT r, . () < NO,). (20)
yox

In other words, in large samples the cross<orrelation coefficient estimator
has a Normal distribution with mean of zero and a variance of 1/(T-i) when the

17The following analysis applies to the true innovations, but it also generally applies in large samples when
residuals from ARIMA models (which are consistent estunators of the true innovations) are used instead.
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two series are unrelated. This fact has led Haugh (1972, 1976) and Haugh and
Box (1977) to suggest the statistic

M
S=T % [r,, O, 21
1=0 x :

a
¢y

which has a chisquare distribution with M+1 degrees of freedom in large samples
under the hypothesis that the series are uncorrelated at all lags.

Tests of Individual Coefficients
Note that (20) can be used to test whether any individual cross-correlation
coefficient is different from zero by comparing the statistic /7 -i r (i),

‘a.a
yox
with a standard Normal distribution. This is analogous to the 7-ratio from the
simple regression in (18), and these statistics are related in the following way.

The estimator of the sampling variance of'f)l. from (18) is

S5%(e))

20 V=
SO0 rhstay)

where S§? (ei) is the estimator of the variance of the disturbance in (18). Thus,
the ¢-ratio from (18) is

v, TS W,
t = = .

=—= 22
S(V,.) S(ei)

Using the relationship in (19),

S(ay)
Se)

i

t = WT-ir, , D]
yox

where S(ay )/S(e;) measures the degree of association between a, and «

X t-i"
For example, the coefficient of determination for (18) is defined as
S2(€;) .
th =1 -—3‘5—(—'— , so the rratio in (22) is equal to the cross-correlation test
a
¥
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statistic divided by \/I-Rl.z. In large samples, both the cross-correlation test
statistic (20) and the regression test statistic (22) have standard Normal distribu-
tions under the null hypothesis that v, = 0. However, whenever ?11. is not exactly
zero, and hence Ri2 is positive, the regression test statistic will be larger than the
cross<orrelation test statistic. Therefore, the regression test will reject the null
hypothesis more frequently at any level of significance. In other words, even
though the cross-correlation test and the regression test have the same large
sample distribution, in finite samples they must have different critical regions.
The small sample properties of the tests are not well-known.

Note that if more than one of the distributed lag coefficients in (17)
is nonzero, the ¢-ratios obtained from the multiple regression (17) will be larger
than the ¢-ratios obtained from the sequence of simple regressions in (18).
This occurs because the variance of the simple regression disturbance €;, includes
systematic variability due to other lagged values of a, which are omitted from
(18). In terms of the true parameters,

so 06_2 is always larger than the variance of the disturbance from the multiple
i1

regression (17), 6%, if more than one value of v; is nonzero. Thus, tests of
significance on individual lags are more powerful using the multiple regression
model (17).

Tests of Sets of Coefficients

If one wants to test the joint hypothesis that a set of coefficients is equal
to zero, there is relationship between cross-correlation and regression test
statistics which is a direct extension of the previous case, where the tests involve
only one coefficient. As mentioned above, the S-statistic defined in (21) has a
Xy + 12 distribution in large samples under the hypothesis that v, =0 for.all
values of i. An alternative test is based on the F-statistic from the multiple
regression (17)

R
YX'XD

F (M+1)S? ()

il

b
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which has an F-distribution with (M+1) and (7-M-1) degrees of freedom. Note
that X'X is the cross-products matrix, which is just 7 + §? (ax) '1(M+ 'y where
1(M+ 1) is an M+1 dimensional identity matrix, since {a, } is serially uncorrelated
with constant variance. Thus, it follows that

TSa)
F=———">F">—3% p?
(M+1)S*(n) i=o !

Sz(ay) 1 M 12
SZ(n) (M+1) T iz:O [rayax(l)}

(Sz(ay) 1
“\s2(m) )(W) N

Therefore, the Haugh S-statistic in (21) is proportional to the multiple regression
F-statistic:

_ S (m)

2
S (ay

) CMtl) - F,

where the ratio 52 (n)/$? (ay) is equal to one minus the coefficient of determina-
tion from (17), (1-R?). Because (M+1) * F has a X2M+1 distribution in large
samples, both Haugh's S-statistic and the regression F-statistic have the same
large sample distribution; however, the S-statistic is always smaller than the
comparable F-statistic when R? is nonzero (Hsiao, 1977, p. 17, derives a similar
result). Thus, the multiple regression F-test will reject the null hypothesis of
no relationship more frequently than tests based on the S-statistic. This does not
mean that the F-test is more powerful than Haugh's test; rather, it means that it
is not really appropriate to use the same critical region for both tests. The
small sample properties of these tests are as yet unknown.
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Appendix C
Calculation of Implied Distributed Lag Coefficients

The distributed lag model for the original variables
o0
Yp Tat X fx gt
= a+B(L)x, +n, (23)

is related to the distributed lag model for the innovations of the original
variables

= v(L)axt +Nt ,

as seen in equations (1) and (3) in the text. Specifically, given the ARIMA
models for y and x, represented by the autoregressive polynomials, ¢>y (L) and
?, (L), and the moving average polynomials, 6y (L) and Gx (L), the coefficients
of B(L) can be computed from the coefficients of v(L), and vice versa, using the
relationship

6,(L) 0,(L)
0,(L) ¢,L)

v(L) = B(L)

For example, Table 3 contains estimates of v, fori=0,1,...,12, based on the
crosscorrelations between the innovations of the inflation rate, a,, and the
inncvations of the growth rate of the monetary base, a,. The ARIMA models
for these variables imply the following relationship between §(L) and v(L):
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B(L)

{(1-0.88L)(1-0.94L4) { (1-112)
1v(L) -
(1-L) (1-1%) (1-0.89L12)

L) 1-0.88L-0.94L%+0.83L5-L'2+0.88L"3+0.94L16-0.83L17
v .
1-L-L4+L5-0.89L' 2+0.89L "' 3+0.89L'6-0.89'7

H

(24)

The cocfficients of $(L) can be obtained by calculating the coefficients of the
right side of (24),

Bo = 7,
B, =B, +v, -0.88,

B, =B, +v, -0.88,

§3 =B, +tr, -088r,

By, =By +B, +v, -0.88r, -0.94p

B, = B, +B, -B, +v,-0.88r, -0.94y +083y,

B, = Bs +B8,-B, +v, -0.88y, -094r, +0.83» ,

and so forth. Although this procedure is tedious when the ARIMA models for
y and x are complicated, it is necessary to carry out this calculation in order
to translate the cross-correlations of the innovations into the coefficients of the
original model (23).
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