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EFFECTS OF MODEL SPECIFICATION ON TESTS FOR UNIT
ROOTS IN MACROECONOMIC DATA

G. William SCHWERT*
University of Rochester, Rochester, NY 14627, USA

Tests for unit roots in autoregressive models (tests for stationarity) are popular in the macroeco-
nomics literature. Monte Carlo experiments in Schwert (1987) show that unit root tests derived for
pure autoregressive processes have different sampling distributions when the true process is a
mixed autoregressive—integrated moving average (ARIMA) process. Tests suggested by Said and
Dickey (1984,1985), Phillips (1987), Phillips and Perron (1986), and Dickey and Fuller (1979,1981)
are applied to a variety of monthly and quarterly macroeconomic time series to illustrate the
effects of ARIMA model specification on inferences about stationarity.

1. Introduction

The question of whether an economic time series is stationary often has
important consequences for the interpretation of economic models and data.
Following Nelson and Plosser (1982), a number of authors, including Shiller
(1981) and Poterba and Summers (1986), have applied the tests proposed by
Fuller (1976) and Dickey and Fuller (1979,1981) to test whether particular
time series variables, such as the dividend payments to the Standard & Poor’s
composite portfolio or the volatility of the Standard & Poor’s portfolio, are
represented by stationary autoregressive (AR) processes,

?
Y=a+ ) ¢ Y, _;+u, (1)

i=1
where the roots of the lag polynomial ¢(L)=(1—¢,L— --- —¢,L7) lie

outside the unit circle [see Box and Jenkins (1976) for a discussion of
stationarity in AR processes]. The null hypothesis in these tests is that the AR
process contains one unit root, so that the sum of the autoregressive coeffi-
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cients in (1) equals 1.0. The Dickey—Fuller test involves estimating the model

(r—1
Y,=a+p¥ ,+ ¥ ¢DY,_ +u, )
i=1

where DY, _,=7Y,_,—Y,_,_ ,, and the coefficient p, should equal 1.0 if there is
a unit root. Dickey and Fuller use Monte Carlo experiments to tabulate the
sampling distribution of the regression ‘¢-statistic’, 7.=(h,— 1)/s(p,). The
distribution of 7, is skewed to the left and has too many large negative values
relative to the Student-¢ distribution. They also tabulate the distribution of the
normalized bias of the root estimate 77( p,— 1) for the AR(1) model.!
Recently several papers have analyzed the sensitivity of the Dickey-Fuller
tests to the assumption that the time series is generated by a pure autoregres-
sive process. Section 2 describes recent extensions of the Dickey—Fuller test
procedure suggested by Said and Dickey (1984,1985), Phillips (1987), Phillips
and Perron (1986), and Perron (1986a,b) that attempt to account for mixed
ARIMA processes as well as pure AR processes in performing unit root tests.
Simulation evidence in Schwert (1987) indicates that when a variable is
generated by a mixed ARIMA process the critical values implied by the
Dickey-Fuller simulations can be misleading, even for large sample sizes.
Section 3 describes several reasons to believe that economic time series are
mixed ARIMA processes, rather than pure AR processes. Section 4 performs
several unit root tests for a variety of macroeconomic time series, including the
monetary base (MBASE), bond yields (BAA), the Consumer and Producer
Price Indexes (CPI and PPI), nominal wages (WAGE), population (POP),
the labor force (LAB), employment (EMP), the unemployment rate (UN),
industrial production (IP), the Standard & Poor’s composite index of stock
prices (SP500), the price/earnings ratio for the S&P index (P/E), the
dividend yield on the S&P index (D/P), stock market volatility (SIG), the
implicit price deflator for GNP (GD), and nominal and real Gross National
Product (GNP and GNP82). These statistics are compared with the critical
values reported in Fuller (1976) and with the relevant critical values from the
simulation experiments in Schwert (1987). In many cases, especially for series
involving growth rates of nominal magnitudes (e.g., price inflation), inferences
about the stationarity of the series depend on the assumed ARIMA model for
the data. Use of the unit root tests advocated by Dickey, Fuller, Said, Phillips
and Perron can lead to the conclusion that these series are stationary when
they may not be. Section 5 discusses the implications of the results for
macroeconomic modeling, and section 6 contains brief conclusions.

'Dickey and Fuller (1979) show that tests based on the normalized bias are more powerful
against the alternative hypothesis that p, <1 than tests based on 7,.



G.W. Schwert, Unit root tests for macroeconomic data 75

2. Extensions of the Dickey~Fuller tests

Said and Dickey (1984) argue that an unknown ARIMA(p,1, q) process
can be adequately approximated by an ARIMA(/,0,0) process, where /=
O(T*'/3). Given this approximation, the limiting behavior of the unit root test
based on a high-order AR approximation will be the same as the Dickey—Fuller
results. Of course, for a given application this argument does not indicate the
appropriate number of lags /.

Said and Dickey (1985) show that the unit root estimator from an
ARIMA( p,0, q) process,

(p—-1) q
Y=a+pY_,+ 2 ¢ DY, tu~— % Ou, ;s (3)
i=1 =1

has the same asymptotic distribution as the Dickey—Fuller estimator. They
provide limited Monte Carlo evidence which shows the effect of estimating the
moving average parameter § for an ARIMA(1,0,1) model on the unit root test
statistic 7,.

The distribution of the estimator §, depends on the structure of the ARIMA
process generating the data. As noted by Fuller (1976, pp. 373-382), the
statistic T ¢(p,— 1) from a general ARIMA model such as (3) has the same
distribution as T( p,— 1) from the AR(1) model, where the constant c is the
sum of the coefficients ¢, from the moving average representation of the errors
from (1) with p=1, ¢(L)=6(L)/¢(L). One strategy for estimating the
constant c is to use the coefficients from the ARIMA( p,0,0) model in (2) or
the ARIMA( p,0, g) model in (3).2

Phillips (1987) shows that the Dickey—Fuller tests are affected by autocorre-
lation in the errors from (2). He develops modifications of the test statistics T,
and T(p,— 1) that have the asymptotic distributions tabulated by Dickey—
Fuller, when the data follow an ARIMA(p,0, ¢) process (actually, Phillips
allows for more general dependence, including conditional heteroskedasticity).
He proposes a two-step procedure, where the first step is to calculate the
Dickey—Fuller test statistics from an ARIMA(1,0,0) model, and then adjust
the Dickey—Fuller statistics using the autocovariances of the errors from (1)
with p = 1. Phillips modifies the test statistic T( p,— 1),

z,=T(p—1)- 0.5(s%,—s3){T-2 Y (Y, - 17_1)2} , (4)

2Mark Watson suggested this approach to me. For the ARIMA(p,0,0) model in (2) c=
1/(1-¢7— —¢,_1), where ¢/ are the ( p— 1) autoregresswe coeﬂic1ents for DY,_,. For
the ARIMA(p,O q) model in (3), c=(1 -6, — -0,/ - ¢ - =l q)



76 G.W. Schwert, Unit root tests for macroeconomic data

where s is the sample variance of u,,

T ! T
sy=T"" Z uy + 277 Wi Z U, s (%)
=2 j=1 " r=j+1

and the weights ;= {1 —j/(/+ 1)} ensure that the estimate of the variance
s is positive. Following the intuition of Said and Dickey (1984), Phillips
suggests that the number of lags / of the residual autocovariances in (5) be
allowed to grow with the sample size T. Phillips modifies the regression ‘¢-test’

Tp,’

T
zm=¢#(su/sn)—o.s(s;,-s,z){sg,r—zZ(Y,_l—?_l)z} . (©)

where s7 is defined in (5).

Dickey and Fuller also consider tests with a time trend included as an
additional regressor, so that the alternative hypothesis is a stationary process
around a time trend. Thus, the ARIMA( p,0,0) process in (2) is modified so
that

(p—-1) .
Y=a+B[t-(T+2)/2] +p,Y, ,+ L ¢DY,_ +u, (7)
i=1

The ARIMA( p,0, ¢) model in (3) is modified so that

(p—1) q
Y=a+B[t—(T+1)/2] +pY, 1+ ¥ ¢/DY,_,+u,~ ¥ bu, .
i=1 j=1

(8)

The regression ‘¢ = tests’, 7,, are important because Evans and Savin (1984)
show that 7, Statistics are a function of the unknown intercept a in (2).
Whereas, including a time trend in (7) or (8), even when the trend coefficient
B =0, makes the distribution of the estimate of the autoregressive parameter p,
independent of a. In empirical applications, where knowledge of the value of
the intercept « is unavailable, inclusion of a time trend is probably a prudent
decision in performing unit root tests.

Phillips and Perron (1986) develop adjustments to the Dickey-
Fuller tests T(p, — 1) and 7, where the alternative hypothesis is a stationary
ARIMAC( p,0, q) process around a deterministic time trend. As in (4) and (6),
the first step in performing these tests is to estimate an ARIMAC(1, 0,0) model
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around a time trend [eq. (7) with p = 1] and then use the residual autocovari-
ances to adjust the Dickey—Fuller statistics. Phillips and Perron show that the
test statistic,

Z,,=T(p,— 1) + (s}, —s2)(T%/24Dyy), ()

has the same asymptotic distribution that Dickey and Fuller tabulate for
T(p,—1) in the ARIMA(1,0,0) case, where D, is the determinant of the
regressor cross-product matrix. They modify the statistic 7,

Z'r'r = T-r(su/sTl) - (STZ'I_ sf)T3{4STI{3DXX}1/2} _1‘ (10)

This statistic should have the asymptotic distribution tabulated by Dickey and
Fuller for 7,, even when the regression errors in (7) are autocorrelated.

3. Many economic time series are not pure AR processes

There are many reasons to believe that economic time series contain moving
average components. Box and Jenkins (1976, pp. 121-125) show that the
sum of two uncorrelated random variables, one of which follows an
ARIMA( p, d, q) process and one of which is serially uncorrelated, follows an
ARIMA( p, d, Q) process, where Q = max{(p + d), g}. Thus, even if an eco-
nomic variable follows a pure autoregressive process (possibly with d unit
roots), if the variable is measured with random error, the measured series will
contain a moving average component. For example, if the true variable follows
a random walk, ARIMA(0, 1,0), but it is measured with independent serially
uncorrelated error, the measured series will follow an ARIMA(O0, 1,1) process.

Muth (1960) discusses the relation between the ARIMA(O0, 1,1) process and
the concepts of permanent and transitory components that have been popular
at least since Friedman’s (1957) analysis of the permanent income hypothesis.
Nelson and Plosser (1982) note that the Muth and Friedman model implies
negative autocorrelation at lag one in the first differences of the data.

Time aggregation of data for non-stationary processes also leads to
ARIMA(O,1,1) processes for the aggregated data. For example, Working
(1960) shows that time aggregated data for a random walk behaves like an
ARIMA(0,1,1) process, with an autocorrelation of 0.25 in the first differences
of the data. Tiao (1972) analyzes more general nonstationary processes and
reaches similar conclusions.

A related phenomenon arises when considering errors from rational fore-
casts in speculative markets. As discussed by Hansen and Hodrick (1980),
multi-period forecast errors of interest rates or exchange rates that are
observed every period should have as an ARIMA(0,0, q) process, where ¢ is
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the length of the forecast horizon minus one. Thus, twelve-month-ahead
forecast errors that are observed every month should follow an ARIMA(0,0, 11)
process.

Finally, as stressed by Zellner and Palm (1974), the univariate ARIMA
representation of an economic time series variable is implied by the dynamic
structure which relates that variable to other economic variables. In quite
general circumstances, all variables in a system of simultaneous equations will
have a moving average component in their univariate ARIMA representations.
For example, Nelson and Schwert (1982) show that a first-order bivariate
autoregressive system implies an ARIMA(2,0,1) univariate representation for
each of the variables.

While there are several econometric reasons to believe that economic time
series variables will not be pure autoregressive processes, the most important
argument in favor of mixed ARIMA processes is that they fit economic data.
Empirical analyses have used mixed ARIMA processes to model the behavior
of many important economic variables, including the monthly inflation rate of
the U.S. Consumer Price Index [Nelson and Schwert (1977)], the monthly
inflation rate of the Israeli Consumer Price Index [Huberman and Schwert
(1985)], the logarithm of the monthly standard deviation of the return to the
Standard & Poor’s composite portfolio [French, Schwert and Stambaugh
(1987)], and the quarterly unemployment rate [Nelson (1972)], among others.

4. Unit root tests for macroeconomic data

Table 1 contains a list of the variables that are analyzed in the following
tables.® There are seven nominal series (MBASE, BAA, CPI, PPI, WAGE,
GD, GNP), four labor force series (POP, LAB, EMP, UN), four stock market
series (SP500, P/E, D/P, SIG), and two real output series (IP and GNPS2).
Ten of the seventeen series are seasonally adjusted. All of the variables are
transformed using natural logarithms, except for the series which are expressed
as percentage rates already (i.e., BAA, UN, P/E, and D/P). Henceforth, all

3All of the data, except for the Standard & Poor’s composite index and the volatility of the S&P
returns, come from the Citibase Databank. The S&P index data represent the value of the index
on the last day in the month, rather than the average for the days in the month. The P/E and
D/P series are adjusted similarly. The S&P volatility data are from French, Schwert and
Stambaugh (1987); o, is an estimate of the standard deviation of the monthly return to the S&P
portfolio based on the sum of the squared daily returns within the month, plus twice the sum of
the lag 1 cross-products,

N, N-1
= 2
0, = Zr“+2 E Tttt
i=1 i=1

where 7,, is the rate of return to the S&P portfolio on day / in month r and there are N, trading
days in month . SIG, =Ing,.

12

’
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Table 1

Macroeconomic time series analyzed in subsequent tables.

Sample period,
Series Description size
Monthly data
MBASE Log of monetary base, adjusted for changes in reserve 1/47-12/85
requirements (FRB St. Louis, seasonally adjusted) T =468
BAA Moody’s Baa long-term corporate bond yield 1/47-12/85
(not seasonally adjusted) T =468
CPI Log of consumer price index for urban consumers (CPI-U) 1/47-12/85
(seasonally adjusted) T =468
PPI Log of producer price index for all commodities 1/47-12/85
(not seasonally adjusted) T =468
WAGE Log of average hourly earnings of production workers 1/47-12/85
in manufacturing (seasonally adjusted) T =468
POP Log of total civilian non-institutional population 1/47-12/85
(not seasonally adjusted) T =468
LAB Log of total civilian labor force 1/48-12/85
(seasonally adjusted) T =456
EMP Log of total employed civilian labor force 1/48-12/85
(seasonally adjusted) T =456
UN Unemployment rate, all workers 16 years & over 1/48-12/85
(seasonally adjusted) T =456
Ip Log of industrial production (seasonally adjusted) 1/47-12/85
T =468
SP500 Log of Standard & Poor’s composite index of stock 1/47-12/85
prices (end-of-month, not seasonally adjusted) T =468
P/E Price /earnings ratio for Standard & Poor’s composite 1/54-12/85
index (not seasonally adjusted) T=1384
D/P Dividend yield for Standard & Poor’s composite index 1/47-12/85
(not seasonally adjusted) T =468
SIG Log of volatility of returns to Standard & Poor’s 1/47-12/85
composite index (not seasonally adjusted) T =468
Quarterly data
GD Log of implicit price deflator for gross national 1/47-4/85
product (seasonally adjusted) T=156
GNP Log of gross national product (seasonally adjusted) 1/47-4/85
T=156
GNP82 Log of real gross national product (1982 dollars, 1/47-4/85

seasonally adjusted) T=156
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references to these variables refer to the logs of the variables, where ap-
propriate.*

4.1. Autocorrelation of the data

Panel A of table 2 contains the first twelve autocorrelations of these
variables, while panel B of table 2 contains the first twelve autocorrelations of
the residuals from a regression of the variable against a time trend. As found
by Nelson and Plosser (1982) using annual data back to the 19th century, the
levels of most of these series are highly autocorrelated. The smallest of the
twelve autocorrelation coefficients in panel A is greater than 0.90 for all of
the monthly series except the unemployment rate (UN) and the four series
derived from the S&P composite index (SP500, P/E, D/P, and SIG). The
autocorrelations for the quarterly data are 0.75 or greater. The detrended
series have smaller autocorrelations, although Nelson and Kang (1981) note
that this is induced by the detrending procedure, even if the true process
contains no trend. The first-order autocorrelations are greater than 0.95 for
every series except for stock market volatility (SIG).

Note, however, that the question of whether these series follow a stationary
process depends on the rate of decay of the autocorrelation function. It is the
flatness of the autocorrelations, and not just their level, that signifies the
presence of an autoregressive root close to or equal to unity. For example,
the volatility series has autocorrelations that are virtually equal after the first
few lags, which is characteristic of an ARIMA(G,1, g) process, where the ¢
moving average parameters affect the first g autocorrelations, and the re-
maining lags are similar because of the unit root in the autoregressive part of
the model.

Panel A of table 3 contains the first twelve autocorrelations of the first
differences of the variables in table 2, and panel B of table 3 contains the first
twelve autocorrelations of the residuals from a regression of the first differences
against a time trend. The first differences in table 3 are much less autocorre-
lated than the levels in table 2, although several of the variables have
autocorrelations that decay very slowly, including most of the nominal vari-
ables (i.e., MBASE, CPI, PPI, WAGE and GD). Except possibly for the
growth rate of the monetary base, detrending the growth rates does not seem
to remove the persistence of the autocorrelations in panel B of table 3. These
autocorrelations behave much like the autocorrelations of stock market volatil-
ity in table 2. Thus, based on the autocorrelations in table 3 it seems as though
money growth rates, inflation rates, and population growth rates (POP) may
be non-stationary, perhaps ARIMA(0, 1, g) processes. The economic implica-

4Thus, the first differences of the variables measure the growth rates of the raw data, and a time
trend for the variables measures an exponential growth path.
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Table 2

Sample autocorrelations of the logarithms of monthly and quarterly macroeconomic time series,
March 1947 to December 1985 (except where noted).?

Sample
Series n r r r rs A ry r rg o m s size T

A. Logarithms of monthly and quarterly data
MBASE 099 099 098 098 097 096 096 095 094 094 093 092 466

BAA 1.00 099 098 098 097 097 096 095 094 094 093 092 466
CPI 099 099 098 097 097 096 095 095 094 093 093 092 466
PPI 099 099 098 098 097 096 096 095 095 094 093 093 466
WAGE 099 099 098 097 097 096 095 095 094 093 093 092 466
POP 099 099 098 098 097 097 09 096 095 095 094 093 466
LAB 099 099 098 098 097 097 096 095 095 094 094 093 454
EMP 099 099 098 098 0.97 096 096 095 095 094 093 093 454
UN 099 097 095 093 090 0.87 083 0.80 076 0.73 0.70 0.67 454
IP 099 099 098 097 097 09 095 094 094 093 092 092 466
SP500 099 098 057 096 095 094 093 092 091 090 089 0.88 466
P/E 098 096 095 092 090 0.88 0.85 0.83 081 079 077 075 382
D/pP 098 097 095 094 092 0950 088 087 085 084 082 081 466
SIG 063 052 041 039 039 034 030 027 029 027 026 025 466
GD 098 09 094 092 090 0.88 0.86 0.84 0.82 0.80 0.78 0.76 154
GNP 098 096 094 092 090 0.88 0.86 0.84 0.82 0.80 0.78 076 154

GNP§2 098 096 094 092 090 0.88 0.86 0.83 0.81 079 0.77 075 154
B. Deviations of logarithms from a time trend
MBASE 099 098 098 097 096 095 094 093 092 092 091 0.90 466

BAA 099 097 095 093 09 088 085 083 081 078 075 071 466
CPI 1.00 099 099 098 098 097 097 096 095 095 094 093 466
PPI 1.00 099 099 099 098 098 097 096 096 095 094 093 466
WAGE 1.00 1.00 099 099 099 098 098 097 097 096 096 095 466
PoOP 099 099 098 097 09 095 094 093 093 092 090 089 466
LAB 099 098 097 09 095 095 094 093 092 091 090 0.89 454
EMP 098 097 096 094 092 0.89 0.87 085 0.83 081 078 076 454
UN 098 096 093 089 0.84 0.79 0.74 0.68 0.63 0.57 052 047 454
IP 099 096 053 089 085 081 0.77 073 069 065 061 057 466
SP500 099 097 096 094 092 091 0.89 087 085 084 082 081 466
P/E 097 094 090 0.87 083 079 075 072 068 0.65 062 059 382
D/P 098 097 095 094 092 090 088 086 085 083 082 080 466
SIG 061 050 038 036 036 031 027 023 026 023 023 021 466
GD 099 097 095 093 09 088 086 083 080 078 075 072 154
GNP 098 096 093 09 087 085 083 081 079 078 0.76 0.73 154

GNP82 0:95 0.89 080 0.72 064 057 050 043 036 030 023 017 154

#See table 1 for a definition of the variables. The ending point for all series is December 1985.
GD, GNP, and GNP82 are measured quarterly; other series are monthly. The data in panel B are
residuals from a regression of the variable against an intercept and a time trend.
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Table 3

Sample autocorrelations of the first differences of the logarithms of monthly and quarterly
macroeconomic time series, March 1947 to December 1985 (except where noted).?

Sample
Series n r s rn s re ry rg ry o i r, sizeT

A. First differences of logarithms of monthly and quarterly data
MBASE 017 025 032 02 027 033 018 029 033 028 029 032 466

BAA 052 012 —-001 006 014 008 002 005 013 018 014 006 466
CPI 062 054 049 045 047 045 043 044 047 046 037 025 466
PPI 036 034 031 022 028 030 019 020 018 012 019 020 466
WAGE 008 012 015 008 014 016 012 0.09 010 015 012 0.06 466
POP 044 043 040 039 036 034 032 029 028 025 025 028 466
LAB —-029 0.03 —0.04 001 —003 000 012 —006 002 —0.03 009 —0.11 454
EMP —015 013 005 011 008 ~0.02 016 027 020 016 018 007 454
UN 013 032 021 018 019 007 003 003 0.00 —0.12 —002 —0.22 454
P 0.44 027 018 012 0.02 001 004 0.02 —-001 —0.02 —0.01 —0.21 466
SP500 0.02 —004 003 008 012 -0.07 —0.05 —0.04 0.04 —003 —0.02 0.06 466
P/E —-0.08 006 008 004 009 001 —0.07 —0.02 -0.02 -0.02 001 —-0.11 382
D/P 003 —0.05 0.07 001 007 0.00-007 —0.07 006 —0.02 —~0.03 0.09 466
SIG —-036 0.02 -013 —0.02 006 —0.01 ~0.01 —0.07 0.06 —0.03 001 —0.05 466
GD 065 059 050 041 037 033 034 038 040 041 035 036 154
GNP 045 028 002 -011 -0.24 —0.11 —0.03 —0.01 014 021 018 005 154

GNP82 037 025 000 —-011 —012 ~-0.06 —0.03 0.08 —0.06 0.03 —001 —0.08 154
B. Deviations of first differences of logarithms from a time trend
MBASE —0.09 001 010 002 004 012 -009 007 012 005 007 011 466

BAA 052 012 -0.01 006 014 008 002 005 013 018 014 006 466
CPI 055 045 040 035 037 034 032 032 036 034 023 009 466
pPPI 034 031 029 019 025 027 014 016 015 0.08 015 016 466
WAGE 007 011 014 007 013 015 010 008 0.09 013 010 004 466
POP 039 038 035 034 030 028 026 023 022 018 0.18 021 466
LAB —030 002 —005 000 -0.04 —001 012 —-0.07 001 —0.04 008 —012 454
EMP -016 013 005 010 007 —0.03 013 -0.10 013 -010 007 —0.15 454
UN 013 032 021 018 019 007 003 003 0.00 —-0.12 —-0.02 —0.22 454
1P - 044 027 018 012 0.02 001 004 0.02 ~001 —0.03 —0.02 —0.21 466
SP500 0.02 -0.04 003 008 012 -0.07 —0.05 —0.04 0.03 —0.03 —0.03 0.06 466
P/E —-0.08 005 008 004 0.09 000 -007 -0.02 -0.02 -0.02 001 -011 466
D/P 0.03 —0.05 007 001 0.07 000 -007 —-0.07 0.06 —0.02 ~0.03 0.09 466
SIG —-036 002 -013 —0.02 0.06 —0.01 —0.01 —0.07 0.06 —0.03 001 —0.05 466
GD 054 043 030 017 012 007 009 015 018 020 011 012 154
GNP 042 0.25 -0.03 —0.16 —0.30 —0.17 —0.07 —0.04 011 019 016 0.01 154

GNPS§2 0.36 0.24 —0.01 —0.12 —0.13 —-0.07 —0.04 —0.10 —0.08 0.00 —0.03 —0.10 154

*See table 1 for a definition of the variables. The ending point for all series is December 1985. GD,
GNP, and GNP82 are measured quarterly; other series are monthly. The data in panel B are residuals
from a regression of the variable against an intercept and a time trend.
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Table 4

Sample autocorrelations of the second differences of the logarithms of monthly and quarterly
macroeconomic time series, March 1947 to December 1985 (except where noted).?

Sample
Series r r r Ts s rg ry rg r o n r, size T

MBASE -054 000 008 -0.05 —-0.03 013 -016 005 006 —0.04 —0.01 0.09 466

BAA —0.09 —0.27 -020 -0.01 0.14 -0.01 —0.08 —0.05 0.05 008 0.04 —0.04 466
CPI —0.39 —-0.05 000 -009 006 —0.02 -002 —0.05 0.06 011 0.04 —0.18 466
PPI —-048 0.00 006 ~012 003 010 -009 0.02 003 -010 0.06 013 466
WAGE -0.52 0.00 006 —007 002 004 —001 -0.02 —0.02 004 0.02 —0.06 466
POP —-049 0.01 -001 002 -0.01 —0.01 002 —0.02 0.02 -0.03 —0.03 005 466
LAB -0.62 016 -005 003 -002 -0.04 012 -0.11 005 -0.06 0.12 —017 454
EMP -0.63 016 —006 004 003 —011 017 -020 020 -0.17 0.17 —0.18 454
UN -0.60 017 —-005 -0.02 0.08 -0.05 -003 002 005 -0.13 018 —0.19 454
P —-0.35 —-0.08 —0.02 003 -0.07 -0.04 005 001 —0.01 —0.03 018 -0.19 466
SP500 -047 —006 0.01 001 011 —-011 0.00 -0.03 007 —0.03 —0.04 011 466
P/E -0.56 005 003 -005 006 000 -006 002 000 -001 0.07-013 382
D/pP —-046 —0.10 010 -006 007 0.00 -0.04 —0.07 0.11 —0.04 —0.07 016 466
SIG -064 019 -009 001 005 -002 002 -0.07 0.08 -0.04 0.03 —007 466
GD -042 0.04 001 —009 002 -008 -004 003 001 011 —-011 003 154
GNP -035 0.08 —-012 001 -0.24 004 007 -012 0.07 0.09 009 -008 154

GNP82 -040 010 —0.11 —0.08 -0.05 002 007 -0.06 —005 010 002 —0.05 154

2See table 1 for a definition of the variables. The ending point for all series is December 1985. GD,
GNP, and GNP82 are measured quarterly; other series are monthly.

tions of the conclusion that variables like stock market volatility, inflation, or
money growth are non-stationary are discussed in section 5.

Table 4 contains the first twelve autocorrelations of the second differences
of the variables in table 2, which are the changes in the growth rates. For all of
the series, except the bond yield BAA, the first autocorrelation is between
—0.35 and —0.64, and most of the other autocorrelations are close to 0. This
is typical of a first-order moving average process,

X,=8,—08,_1, (11)

with 8 = 0.9. Box and Jenkins (1976) and Plosser and Schwert (1977) discuss
how differencing a random series creates a first-order moving average process
with 8 = 1, so that the first-order autocorrelation coefficient for the differences
is p; = —0.50.

Table 5 contains average autocorrelation coefficients from 10,000 repli-
cations of a simulation experiment where the data are generated by an
ARIMA(0,1,1) process,

(Y,—-Y,_)=¢,—0O¢,_,, t=-19,...,T, (12)

with # =0.8, 0.5, 0, —0.5, or —0.8, and with samples of T =150 or 450. The
first twenty observations are discarded to eliminate the effects of the initial
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Table 5

Average sample autocorrelations of an ARIMA(O,1,1) process, the detrended data, and the first
differences of the data.?

Moving
average . ..
Average autocorrelation coefficient at lag k
Sample parameter & i
size T [ n r r s rs I ry rg ry o ni na

A. Levels of the dara

0.8 045 043 040 038 035 033 030 028 025 023 020 018

0.5 083 078 0.73 068 063 0.58 053 048 043 038 0.33 028

150 0.0 094 088 082 076 070 064 059 053 047 041 035 030
—-0.5 095 089 083 077 071 065 059 053 047 041 035 029

-0.8 09 090 084 078 072 066 060 054 048 042 036 031

0.8 0.70 0.69 068 066 065 064 063 062 061 060 059 0.57

0.5 094 092 091 089 087 0.8 084 082 081 079 078 0.76

450 0.0 098 096 095 093 091 0.89 088 08 084 0.83 081 0.79
-0.5 099 097 095 094 092 090 088 087 085 0.83 0.8l 0.80

-08 099 097 095 094 092 090 088 087 085 0.83 0.8 0.80

B. Detrended levels data

0.8 028 027 025 024 022 020 019 017 016 015 013 012

0.5 074 069 065 060 056 052 047 043 039 036 032 0.28

150 0.0 093 087 081 075 069 064 058 053 048 043 039 034
-0.5 096 090 083 077 071 065 060 055 049 044 040 035

-08 097 090 084 077 071 066 060 055 050 045 040 035

0.8 0.54 053 052 051 050 049 048 047 046 045 044 043

0.5 090 088 08 084 082 080 078 076 074 073 0.71 0.69

450 0.0 098 095 093 091 089 087 085 083 081 079 0.77 0.75
—-0.5 099 09 094 092 09 088 086 084 081 079 077 0.5

-0.38 099 097 094 092 09 088 08 084 082 080 078 0.76

C. First differences of the data

08 —-049 000 000 000 000 000 000 000 000 000 000 0.00

05 —040 000 000 000 000 000 000 000 000 000 000 0.00

150 0.0 -0.01 -0.01 —0.01 —-0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01
—-0.5 0.39 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01

—0.8 0.48 -0.02 —0.01 —0.01 —0.01 -0.01 —0.02 —0.01 —0.01 —0.01 —0.02 —0.02

08 —049 000 000 000 000 000 000 000 000 000 0.00 0.00

05 —-040 000 000 000 000 000 000 000 000 000 000 0.00

450 0.0 0.00 0.00 000 000 000 000 000 000 000 000 000 0.00
~0.5 040 -0.01 0.00 000 000 000 000 000 000 000-001 000

-08 0.48 —0.01 000 000 000 000 000 000 0.00-0.01-0.01 0.00

*These values are the averages of the sampling distribution of the autocorrelations based on 10,000
replications of an ARIMA(0,1,1) process,

(Y= Y_)=¢ —f¢_,, t=-19,...,T,

where the first twenty observations are discarded to eliminate startup effects.
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conditions Y_,,=¢_,,=0. Panel A contains the average autocorrelations for
the levels of the data, Y,, panel B contains the average autocorrelations for the
detrended levels data (residuals from the regression of Y, against an intercept
and a time trend), and panel C contains the average autocorrelations for the
first differences (Y, — Y,_,). As discussed in Wichern (1973), the autocorrela-
tions of the levels of an ARIMA(0, 1,1) process are flat, and they are closer to
0 as @ is closer to 1. Detrending the data causes the autocorrelations to be
smaller, even though there is no trend in the process used to generate the data.
The autocorrelations for the first differences are essentially zero, except for lag
1, where r, = —0/(1 — 8?). ,

It is apparent from the simulation results in table 5 that the patterns of
autocorrelations in tables 2, 3, and 4 are consistent with ARIMA(0,1, q)
processes for several of the series. Stock market volatility SIG, the inflation
rates of the CPI, the PPI, and the GNP deflator, the growth rate of population
POP, and possibly the growth rate of the monetary base MBASE all have
these characteristics.

4.2. ARIMA(1, 0, 1) models for stock market volatility and growth rates of other
macroeconomic variables

Table 6 contains estimates of the ARIMA(1,0, 1) model for the log of stock
market volatility SIG (from table 2) and for the growth rates of the other
variables from table 3 for the 1949-1985 sample period. The model is
estimated with and without a time trend, and several tests are reported to
indicate whether the autoregressive coefficient ¢ is close to unity. For example,
‘t-tests” of whether the AR and MA coefficients equal 1.0 are in parentheses
under the coefficient estimates. Table 6 also contains estimates of the correla-
tion between the estimates of the AR and MA parameters, C(¢, 8), a ‘t-test’ of
whether there is parameter redundancy, ¢ = 8, and the Box—Pierce statistic for
six lags of the residual autocorrelations Q(6) to indicate the adequacy of the
ARIMA model. Finally, table 6 contains estimates of an ARIMA(0,1,1)
model [where the constant term in this model corresponds to the time trend
coefficient 8 in the ARIMA(1,0,1) model], and the Box-Pierce statistic for
this model, to indicate the effects of constraining the autoregressive coefficient
o=1.

There are several patterns in table 6. First, the AR and MA parameter
estimates are often close to each other, usually with the AR parameter being
larger. Accordingly, the correlations between the estimates C(¢, #) are quite
large, and many of the ‘s-tests’ for parameter redundancy are small.> When the

3The distribution of this statistic is unlikely to be Student-t, because an ARIMA( p,0, ¢) model
is observationally equivalent to an ARIMA(p + k,0, g+ k) model. See Nelson and Schwert
(1982) for a discussion of the effects of parameter redundancy on tests of alternative ARIMA
model specifications.
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Table 6

Estimates of ARIMAC(1,0,1) and ARIMA(0,1,1) models for logarithms of monthly and quarterly
macroeconomic time series, including tests for parameter redundancy, January 1949 to December
1985 (except where noted); r-tests under coefficient estimates.?

Y,=a+ Bt~ (T+1)/2+ Y, +u,~0u_,.

ARIMA(1,0,1) model

ARIMA(0,1,1) model

Series @ ¢ ¢ C(9,8) B o(6) 6 B o(6)
MBASE 000023 0.952 0851  0.549 16.9
(346)  (—333) (—497) (259
0.00383 0078 0171 0985 0014 146 0871 0028 159
(339)  (—=339) (=305 (—017) (321 (-550) (112
BAA 001203 0308 —0309  0.827 10.6
(119)  (—854) (~162)  (3.99)
001202 0309 —0309 0827 —0004 106 0737 —0519 107.0
(119)  (-852) (-162)  (3.99) (—0.05) (—815) (—0.22)
CPI 0.00023 0938 0589  0.582 20.5
(282)  (-323) (-868) (577
0.00037  0.896 0532 0706 0001 164 0661 0017 276
(326) (=352 (—821) (452)  (2.05 (—949)  (0.43)
pPI 0.00025  0.925 0725  0.773 15.3
(212)  (=273) (-532) (267)
000029 0911 0711 0817 0001 156 0788  0.018 137
Q17) (—264) (—497) (228 (1.02) “(=722)  (029)
WAGE  0.00737 —0673 —0694 0993 46.1
(5.36)  (—549) (—567) (0.04)
000762 —0.728 —0740 0996 0011 308 0929 0004 85
(482)  (—489) (—498) (0.02) (2.87) (—4.00)  (0.29)
POP 0.00006  0.949 0740  0.698 0.3
(2.44)  (-249) (-581) (3.42)
0.00008  0.938 0727 0752 0000 03 079 0001 11
(241)  (-244) (-549) (298)  (0.87) (-7.08)  (0.15)
LAB 000133  0.089 0357  0.960 2.8
(485)  (-531) (—3.99) (—0.81)
000121 0152 0438 0951 0002 33 0976 0005 333
(5.04)  (—548) (—3.99) (—098)  (2.59) (—218)  (1.04)
EMP 000212 —0471 —0333 0985 19.8
(482) (=601) (—510) (—-027)
0.00209 —0480 —0340 0984 0003 184 0949 0006 264
(4.86) (—614) (—518) (—028)  (1.45) (—336)  (0.56)
UN ~0.00004  0.820 0594  0.895 12,0
(—001) (—290) (—467) (1.56)
—~0.00019 0819 0593 0895 0012 120 0729 -0237 77
(—005) (-290) (—466) (155  (0.37) (—821) (—0.08)
P 0.00120  0.638 0251  0.885 34
(265) (—461) (-1756) (225
000121 0637 0251 088 —0002 35 0606 0033 236
(2.65)  (—461) (-754) (223) (-0.67) (-104)  (0.16)
SPS00 000769 —0290 —0335  0.998 11.6
(149 (-172) (—181) (0.03)
000792 —0328 —0373 0998 —0017 114 0979 —0030 133
(1.53) (=177 (—186) (0.03) (—0.74) (—1.96) (—0.66)
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Table 6 (continued)

ARIMA(1,0,1) model ARIMA(0,1,1) model
Serics « ¢ 8 C@#.8) B 06 6 B 06
P/E 000165 —-0236 —0165  0.997 8.5

(0.04) (-176) (—1.63) (—0.05)
001302 -0235 —0164 0997 —0135 84 0998 —0025 93
(021)  (-176) (-1.63) (-005) (—0.29) (—018) (—0.09)

pP —0.00941 —0548 —0631  0.991 3.5
(065 (—511) (—580) (0.14)
0.00954 —0.565 —0646 0991 0085 33 0989 0118 78
(—0.65) (—526) (=599 (0.14) (0.74) (-113)  (0.79)

SIG —~0.55683  0.842 0368  0.726 10.0
(—421) (—422) (-981) (499
—~0.65472 0815 0342 0755 0161 92 0559 —0054 232
(—439) (—440) (—963) (455  (1.94) (-11.2) (-001)

GD 0.00047  0.955 0627 0579 0.8
(124)  (—-144) (—457) (3.18)
000111  0.897 0574 0743 0011 14 0665 —0020 0.7
(1.66)  (-176) (—404) (2100 (137 (-5.27) (—0.14)

GNP 0.00850  0.534 0168  0.903 48
(269 (—282) (-425 (1.04)
0.00934  0.489 0173 0917 0045 78 0697 —0126 231
(2.70)  (-280) (—390) (082 (1.93) (—4.95) (—041)

GNP82  0.00370  0.498 0167 0915 5.9
(240)  (-278) (-398%)  (0.87)
0.00379  0.487 0158 0920 —0008 59 0623 —0126 161
(236)  (=273) (—390) (0.83) (—0.43) (—5.66) (—0.36)

@See table 1 for a definition of the variables. The ending point for all series is December 1985.
GD, GNP, and GNP82 are measured quarterly; other series are measured monthly. The log of
stock market volatility S/G from table 2, and the growth rates of the other variables from table 3
are used to estimate the models. Q(6) is the Box—Pierce (1970) test for residual autocorrelation
based on six lags, which should be distributed as x? with four degrees of freedom for the
ARIMAC(1,0,1) model and with five degrees of freedom for the ARIMA(0,1,1) model. C(¢, ) is
the estimate of the correlation between the estimates of the AR parameter ¢ and the MA
parameter equal 1.0 (which will not have a Student-r distribution under the null hypothesis).
Under the estimates of a and B are r-tests of whether these coefficients equal zero. Under the
correlation C(¢, 8) is a ‘r-test’ of whether there is parameter redundancy (¢ = 8). The estimates of
the trend coefficient 8 are multiplied by 1000.

AR coefficient is constrained to equal unity in the ARIMA(0,1,1) model, the
estimates of the MA coefficient § are never lower than 0.56 and in many cases
are very close to 1. The ¢-tests on the time trend coefficients are usually small,
although there are a few cases (MBASE, CPI, WAGE, and LAB) where the
t-tests for a deterministic trend are large for the ARIMAC(1,0,1) model, but
not for the ARIMA(G, 1,1) model. The Box—Pierce statistics Q(6) indicate that
there is substantial autocorrelation in the residuals from these models for
several series. It is interesting to note, however, that this diagnostic test is
often smaller for the ARIMA(0,1,1) than for the ARIMA(1,0,1) model,
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even though the latter model allows an additional free parameter. It seems
that constraining the AR parameter ¢ =1 is sometimes helpful when ¢ = 6.

Thus, the estimates of ARIMA(1,0,1) and ARIMA(0, 1,1) models in table 6
illustrate the argument that these models often describe the behavior of the
growth rates of macroeconomic time series. The ‘typical’ ARIMA(0,1,1)
model for growth rates (and stock market volatility) has a large positive
moving average coefficient 4. The simulations and test results below show that
for this case, the unit root tests of stationarity proposed by Dickey, Fuller,
Phillips, Perron, and Said are misleading.

4.3. Regression t-tests for unit roots

While the autocorrelations in table 2 suggest that most of the series contain
at least one unit root in the autoregressive polynomial, and the autocorelations
in table 3 suggest that several of the series of growth rates still contain an
autoregressive unit root, the autocorrelations do not provide a formal test.
Table 7 contains the 0.05 level critical values for six different ‘s-tests’ where the
underlying data are assumed to be generated by an ARIMA(O, 1,1) process, as
in table 5. These values are interpolated from the simulation results in Schwert
(1987). Panel A contains the critical values for tests with no time trend in the
model, and panel B contains the critical values for the tests where a time trend
is included. The AR(1) test is based on egs. (1) or (7) with p = 1; the Phillips
corrections to the AR(1) test use egs. (6) or (10) with / lags of the residual
autocorrelations in (5), where / is set in (132) and (13b); the ARMA(1, 1) tests
use egs. (3) or (8); the AR(/,) and AR(/;,) tests use egs. (2) or (7) with /, and
1,5 lags, respectively, where /, and /,, are defined in

1,= Int{4(T/100)/*}, (13a)
1, = Int{12(T/100)""*}, (13b)

so that /,=5, I;,,=17 when T=444, and /,=4, I;,=13 when T=140.%
As discussed by Schwert (1987), it is apparent from table 7 that the critical
values for these tests do not conform to the Student-z distribution, and they
are sensitive to the process which generates the data. In particular, when the
underlying process is ARIMA(0,1,1) with 8 = 0.8, the Dickey—Fuller (1979)
test and the tests proposed by Phillips (1987) and Phillips and Perron (1986)
have critical values that are far below the Dickey-Fuller distributions tabu-
lated in Fuller (1976) [which are represented by the AR(1) test when the data
are generated with 8 = 0). In other words, these tests will lead to the conclu-
sion that economic data are stationary much too frequently. The best test, in
the sense that it is least affected by the different processes used to generate the
data, is the high-order autoregressive test proposed by Said and Dickey (1984),

©The number of lags used in the high-order autoregressions and in Phillips’ (1987) tests are
allowed to grow with the sample size, as suggested by Said and Dickey (1984).
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Table 7

0.05 critical values for regression 7-tests for a unit root in the autoregressive polynomial of the
ARIMA model, where the simulated data follow an ARIMA(0, 1, 1) model.?

A. No time trend in model, A

Moving

Sample average
size T parameter 8  ARQ1) Z,(/,) Z,(;) ARMAQ,1) AR(/) AR(/,)
0.8 -998 -1:016 -11.15 —2.98 —4.38 —2.92
0.5 —545 —5.30 —-6.16 ~2.78 -3.02 -2.82
140 0.0 -2.90 —2.93 —2.95 —2.83 -2.87 -2.82
-0.5 -2.59 -2.73 -2.67 -2.87 -2.93 —2.85
-038 -2.59 -2.74 —2.67 -3.03 -3.02 —2.87
0.8 -1329 -1381 -17.78 —3.98 —4.54 -2.92
0.5 -572 —4.81 -5.97 -3.44 -2.94 ~2.83
444 0.0 —-2.89 -291 —2.95 -3.05 —2.88 —2.84
-0.5 —2.55 -2.77 ~2.78 —2.98 —2.84 —2.84
-08 ~2.53 -275 -2.75 -3.00 =273 —2.83

B. Time trend in model, ,

Moving

Sample average
size T parameter § AR(1) Z_(l;) Z,(l;;) ARMAQ,1) AR(/,) AR(/;,)
0.8 -1094 -11.06 -11.69 -319 -5.09 -3.49
0.5 -6.58 —6.59 —-7.36 —2.66 —-3.61 -3.36
140 0.0 -347 —3.53 -3.47 -3.12 -341 -3.36
-0.5 —2.80 -3.15 —2.96 -3.30 -3.49 —-3.36
-038 =277 -313 —2.95 —343 —-3.61 -3.38
0.8 -1507 -1568 —19.27 -3.21 -5.43 -347
0.5 —17.06 —-6.36 -8.04 -3.25 -3.54 -3.39
444 0.0 -3.44 ~3.48 —3.54 -343 —3.42 —3.40
-0.5 -2.79 -3.25 -3.20 ~3.46 -3.37 -3.38
-038 -271 -3.22 -3.18 ~3.49 -3.22 -3.39

#These values are interpolated from tables 2 and 3 in Schwert (1987). They are the 0.05 fractiles
of the sampling distribution of the regression ‘r-test’ for a unit root against the alternative
hypothesis that the process is stationary around a constant mean (panel A), or that the process is
stationary around a time trend (panel B). Based on 10,000 replications of an ARIMA(0,1,1)
process,

(Y,—Y,_)=¢—0¢_,, t=-19,. . T,
where the first twenty observations are discarded to eliminate startup effects. The AR(1) test is
based on egs. (1) or (7) with p = 1; the Phillips corrections to the AR(1) test Z_(/) use egs. (6) or
(10) with / lags of the residual autocovariances in (5), where / is defined in (13a) and (13b); the
ARMA(1,1) tests use egs. (3) or (8); the AR(/,) and AR(/;,) tests use egs. (2) or (7) with /, and
1}, lags, respectively, where /, and /,, are defined in (13a) and (13b).
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AR(/};). All of these tests are applied to the series in table 1 to determine
whether inferences about stationarity are different from different tests. Based
on the results of these simulations, and the evidence in tables 2 and 3, the
Dickey-Fuller and Phillips tests of stationarity will reject a unit root for the
series that have small positive autocorrelations which do not decay.

Table 8 contains 7-tests for unit roots in the levels of the variables (similar
to table 2), both with (panel A) and without (panel B) a time trend in the
model. Thus, the null hypothesis is that these variables follow a non-stationary
process, and the alternative hypothesis is that the variables follow a stationary
process (around a deterministic time trend in panel B). All of the tests are
computed as in table 7, except that the ARMA(1, /, — 1) test estimates the
same number of parameters as the AR(/,) test. In table 8, tests that reject the
unit root hypothesis for all of the values of the moving average parameter in
table 7 are indicated with a plus (*), and tests that reject using the
Dickey-Fuller critical value (i.e., with 8 = 0), but not for other values of the
moving average parameter are indicated with an asterisk (*) (these are cases
where the outcome of the test depends on the process that generated the data).

In panel A of table 8, all of the tests fail to reject the hypothesis that the
series are non-stationary, except for the tests on stock market volatility. For
volatility, the AR(1) and Phillips tests would reject the unit root hypothesis
strongly using the Dickey-Fuller critical values, but not using the critical
values for the case where 8 = 0.8 in table 7. The ARMA(1, /, — 1) test does not
reject a unit root in the autoregressive polynomial, while the AR(/,) and
AR(/,,) tests both reject the unit root hypothesis for all values of 8 in table 7.

In panel B of table 8, a few more of the unit root tests are ambiguous. The
tests on stock market volatility have the same conclusions as in panel A,
except the AR(/,) test is now ambiguous (i.e., it would reject a unit root
except when § = 0.8 in table 7). In addition, the AR(1) and Phillips’ Z, (I,)
test would reject the unit root hypothesis for the population series POP using
the Dickey—Fuller critical values, but not using the critical values for the case
where 6 = 0.8 in table 7. The ARMA(1, /, —1) test rejects a unit root in the
autoregressive polynomial, while the AR(/,) and AR(/,,) tests do not reject
the unit root hypothesis for all values of 6 in table 7. Also, the AR(/,) test
rejects the unit root hypothesis for the unemployment rate for some but not alt
of the moving average parameters § in table 7.

Thus, even for series like the unemployment rate (UN), the nominal bond
yield (BAA), the dividend yield (D/P) and the price/earnings ratio (P/E),
the tests in table 8 do not reject the unit root hypothesis. For stock market
volatility (SIG), the conclusion of the test depends on the type of ARIMA
model that generated the data. The autocorrelations of SIG in table 3 look
like the autocorrelations of an ARIMA(0,1,1) process with § = 0.8 in table 5,
which suggests that the appropriate critical values to use in table 8 are for the
case where § = 0.8. In this case, the unit root hypothesis should not be rejected
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Table 8

Regression 7-tests for the presence of a unit root in the autoregressive polynomial of the ARIMA
model for the logarithms of macroeconomic time series, January 1949 to December 1985.>®

A. No time trend in model, 7,, Dickey—Fuller 0.05 critical value = —2.90

> Tus

Series AR(1) 7, (1) Z,.() ARMA1,/,-1) AR(/}) AR(/}5)
MBASE 10.23 9.79 7.34 9.45 6.04 2.12
BAA —0.51 —-0.76 -0.92 -0.77 -0.94 -1.29
CPI 10.51 5.46 3.56 6.09 2.54 1.22
PPI 4.10 2.41 1.58 2.59 1.39 0.80
WAGE 3.64 3.09 2.25 3.06 2.45 1.67
POP 5.09 2.95 1.98 312 1.41 0.40
LAB 1.53 2.25 227 2.45 2.39 1.57
EMP 0.98 0.92 0.77 0.81 0.75 1.00
UN —-1.28 -1.97 —-2.24 —-1.96 -2.83 -2.05
1P -1.37 —-1.15 -1.15 —-1.00 -1.18 —1.21
SP500 —-1.69 -1.67 —1.68 ~1.58 —1.63 —-1.68
P/E —1.80 -1.91 -1.95 -1.90 -2.07 —1.55
D/P —-215 -2.21 -219 -213 —227 ~2.02
SIG —9.83* —9.88* —11.98* —1.88 —-482% -3.13"
GD 7.03 4.06 2.81 4.06 1.58 0.39
GNP 3.16 2.50 2.55 1.86 2.08 1.91
GNP82 -1.14 -0.99 —-1.05 -1.05 -0.87 —-1.30
B. Time trend in model, 1., Dickey—Fuller 0.05 critical value = —3.44
Series AR(1) Z..() Z..(l)) ARMA(,/,—-1) AR(/y) AR(/;}5)
MBASE —-1.15 —-1.16 —1.05 —-1.16 -1.12 —-0.85
BAA —1.46 -210 —2.54 -2.00 -2.37 —3.16
CPI ~0.47 -0.54 —0.69 —0.64 -0.60 -0.92
PPI —-1.27 -1.18 —-1.25 -1.29 —-1.19 —-1.21
WAGE -0.59 —0.66 -0.82 —0.68 -0.73 —-1.03
POP —5.59* —3.81* -3.15 -387% —2.85 —2.65
LAB —-2.49 —2.57 —2.59 —-2.57 —2.65 —2.61
EMP ~1.83 —-1.90 —2.08 —-1.93 -2.15 -2.07
UN —2.46 -3.13 —-3.44 —-2.97 —4.06* —3.25
ir —-1.69 —2.57 -2.59 —2.64 —-3.31 -2.29
SP500 —2.38 —2.46 —2.44 —-2.37 -2.54 -2.25
P/E —-2.67 —2.82 —2.87 —-2.62 —-2.99 —-2.54
D/P —2.08 -214 —-2.10 —-2.07 —-2.20 -1.92
SIG -1027* —10.38* —12.28* —1.90 —-517* —3.49%
GD —1.43 -118 -1.18 -0.91 —1.85 -2.03
GNP —-1.27 —-1.30 -1.29 -1.12 —1.48 —-1.37
GNP§2 —1.57 —-2.08 —1.95 —2.36 -231 -1.70

®See table 1 for a definition of the variables. The ending point for all series is December 1985.
GD, GNP, and GNP82 are measured quarterly; other series are monthly.

®Superscript plus signs indicate tests where one would reject the unit root hypothesis for all of
the processes in table 7 at the 0.05 level. Asterisks indicate tests where one would reject the unit
root hypothesis using the Dickey~Fuller critical value, but not using the critical values for all of
the processes in table 7 at the 0.05 level.
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for the stock market volatility, even though conventional Dickey—Fuller tests
would reject non-stationarity.

Table 9 contains 7-tests for unit roots in the first differences of the variables
(similar to table 3), both with (panel A) and without (panel B) a time trend in
the model. Thus, the null hypothesis is that the growth rates of these variables
follow a non-stationary process, and the alternative hypothesis is that the
growth rates follow a stationary process (around a deterministic time trend in
panel B). As in table 8, tests that reject the unit root hypothesis for all of the
values of the moving average parameter in table 7 are indicated with a plus
(*), and tests that reject using the Dickey—Fuller critical value (i.e., with
6 = 0), but not for other values of the moving average parameter are indicated
with an asterisk (*) (these are cases where the outcome of the test depends on
the process that generated the data).

In panel A of table 9, most of the tests reject the unit root hypothesis using
the Dickey—Fuller critical values (§ =0 in table 7), although the ARMA(I,
[4— 1) test does not reject a unit root in the autoregressive polynomial except
for the growth rate of stock market volatility SIG and the growth rate of the
monetary base MBASE. For the CPI and the GNP deflator inflation rates, the
only tests that reject the unit root hypothesis depend on the type of process
that generated the data. Like the level of stock market volatility in table 7,
these inflation rates have autocorrelations that are similar to an ARIMA(0,1,1)
process with § = 0.8, in which case the unit root hypothesis would not be
rejected using the critical values in table 7. The highest-order autoregressive
tests AR(/;;) does not reject the unit root hypothesis for money growth
(MBASE), population growth (POP), and GNP growth (GNP).

The tests in panel B of table 9 that include a time trend yield similar
conclusions to the results in panel A. The ARMA(1, /, — 1) test rejects a unit
root in the autoregressive polynomial only for the growth rate of stock market
volatility. Several of the other series yield results that are ambiguous, de-
pending on the structure of the process that generated the data. Thus, for CPI
and GNP deflator inflation rates and for population growth, the conclusion of
the test depends on the type of ARIMA model that generated the data. The
autocorrelations of these series in table 4 look like the autocorrelations of an
ARIMA(0,1,1) process with § =0.8 in table 5, which suggests that the
appropriate critical values to use in table 7 are for the case where § = 0.8. In
this case, the unit root hypothesis should not be rejected, even though
conventional Dickey—Fuller tests would reject the unit root hypothesis. For
several of the other series, the conclusion of the test procedure depends on
which test is used.

4.4. Tests for unit roots based on the normalized bias, T(p — 1)

As discussed above, Dickey and Fuller (1979) note that the normalized bias
T(p — 1) provides a more powerful test against the hypothesis of stationarity
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Table 9

Regression 7-tests for the presence of a unit root in the autoregressive polynomial of the ARIMA
model for the first differences of the logarithms of macroeconomic time series, January 1949 to
December 1985.»°

A. No time trend in model, 1,, Dickey—Fuller 0.05 critical value = —2.90

Series AR(1) Z, () Z,() ARMAQ/,—-1)  AR(/)  AR(l,)
MBASE —18.46* -19.38* —24.04* —3.47* -531* -2.29

BAA —11.69* -11.32* —11.91* —2.26 -711% —434%*
CPI ~9.25*% —9.14* —11.75* —2.40 —4.05* -2.91*
PPI —14.23% —-15.06* —18.18" —2.09 -531" —3.95*
WAGE -19.86" -20.27" —22.78% —1.88 -6.70" -3.63*%
POP -13.11* —14.00* —17.69* —2.06 —4.73"* —2.65

LAB —26.78" —27.45" -26.71% ~2.58 -10.55* -391*
EMP —23.66"% —23.48" —23.82" —2.61 -6.94" -57*
UN -16.07" -17.09* ~17.89" -2.69 -6.01" -5.27*
IP -13.12* -13.37* —13.09* —246 -797* —6.04"
SP500 —20.33" -20.37* ~20.34" -217 -7.63"* —5.53*
P/E —20.24" —20.22% -20.21% —-1.44 —6.86" -572*
D/P -20.07* —20.07" -20.05" -097 -8.37% —572"
SIG —-30.00" -3591" —48.07" —427* -13.45% ~6.97*
GD —5.24* —5.07* —6.46* -1.44 -2.40 —-1.38

GNP —17.76* -17.72* —8.00* ~1.16 —5.60" =27

GNP82 —821* —8.14* —7.83* —-1.80 —6.04"% -4.10"

B. Time trend in model, 1,, Dickey—Fuller 0.05 critical value = —3.44

Series AR(1) Z..(1y) Z.(l,) ARMA(,/,-1) AR(/,) AR(/},)
MBASE ~23327 -23217 —23.64% -2.82 —835* —3.45*
BAA —11.67* —11.29* —11.89* ~2.25 —7.09* —430"
CcpPI -10.71* —10.98* —13.71* -214 —4.62* —3.42*
PPI —14.81* —15.66* —18.45* -1.87 —5.60" —4.25¢
WAGE —20.46" -20.72" —22.59" -1.60 -7.14% —4.05*
POP —13.74* —14.70* ~18.13* -1.99 —4.96* —2.68

LAB —27.06" -28.13" —28.03" -2.74 -11.07* —4.53*%
EMP —23.74" —23.55* —-23.80" -291 -7.01% -590*
UN -16.07* -17.09" —17.88* —2.69 —-6.00" —5.26"
1P -13.13* -13.37* —13.03* —2.45 -7.99* -6.10"
SP500 —20.34" —-2037* ~20.34" -212 -7.65" —559*
P/E -20.22* —-20.20" -20.19* —143 —6.85" -573"
D/P -20.07* —-20.06* —-20.04" -0.93 —8.38" —5.76"
SIG —29.96" —35.87" —48.017 —4.25% —13.44% -6.97"
GD —6.59* —6.68* —7.93* -1.78 -3.24 —-1.80

GNP —-8.21* —8.05* —7.83* -1.86 -6.14" —3.59*
GNP82 —8.20* —8.13* -7.78* -1.64 —6.04* —4.237

#See table 1 for a definition of the variables. The ending point for all series is December 1985.
GD, GNP, and GNP82 are measured quarterly; other series are monthly.

®Superscript plus signs indicate tests where one would reject the unit root hypothesis for all of
the processes in table 7 at the 0.05 level. Asterisks indicate tests where one would reject the unit
root hypothesis using the Dickey-Fuller critical value, but not using the critical values for all of
the processes in table 7 at the 0.05 level.
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(p < 1) than the regression ‘s-test’. Table 10 contains the 0.05 level critical
values for eight different tests where the underlying data are assumed to be
generated by an ARIMA(0,1,1) process, as in table 5. These values are
interpolated from the simulation results in Schwert (1987). Panel A contains
the critical values for tests with no time trend in the model, and panel B
contains the critical values for the tests where a time trend is included. The
AR(1) test is based on egs. (1) or (7) with p = 1; the Phillips corrections to the
AR(1) test use egs. (4) or (9) with [ lags of the residual autocorrelations in (5),
where / is set in (13a) and (13b); the ARMAC(1, 1) tests use egs. (3) or (8); the
AR(/,) and AR(/,,) tests use egs. (2) or (7) with I, and /;, lags, respectively,
where [, and /,, are defined in (13a) and (13b). The AR(/,)¢ and AR(/,)¢
tests use the correction suggested by Fuller (1976), Te(p — 1), where ¢ =1/
(1—¢4— --- —¢)_,), and the coefficients ¢, are the coefficients of the lagged
differences DY, _,; in (2). It is apparent from table 10 that the critical values for
these tests depend on the process that generates the data. The values for § =0
are essentially the same as those tabulated by Fuller (1976); otherwise, the
critical values for this test are inversely related to the moving average parame-
ter 8. With 8 = 0.8, the critical values are well below the Dickey—Fuller critical
values. In other words, these tests would lead to the conclusion that economic
data are stationary too frequently when the data follow an ARIMA(O,1,1)
process with 8 = 0.8. Even with the Fuller correction Te(p — 1) none of the
autoregressive tests or the Phillips tests are well-behaved. The ARMA(1,1)
test, which is based on the ARIMA model that generated the data in the
experiments, comes closest to having the same critical values for all values of
the moving average parameter 6 for both sample sizes.

Table 11 contains normalized bias tests for unit roots in the levels of the
variables (similar to the 7-tests in table 8), both with (panel A) and without
(panel B) a time trend in the model. All of the tests are computed as in table
10, except that the ARMA(1,/,—1) test estimates the same number of
parameters as the AR(/,) test. In table 11, tests that reject the unit root
hypothesis for all of the values of the moving average parameter in table 10
are indicated with a plus (*), and tests that reject using the Dickey—Fuller
critical value (i.e., with 6 = 0), but not for other values of the moving average
parameter are indicated with an asterisk (*) (these are cases where the
outcome of the test depends on the process that generated the data). In panel
A of table 11, all of the tests fail to reject the hypothesis that the series are
non-stationary, except for the tests on stock market volatility SIG and the
adjusted AR(/,)¢ test for the unemployment rate UN. For volatility, the AR(1)
and Phillips’ tests would reject the unit root hypothesis strongly using the
Dickey-Fuller critical values, but not using the critical values for the case
where 6 =0.8 in table 10. The high-order autoregressive tests reject for all
values of 8 in table 10.

In panel B of table 11, a few more of the unit root tests are ambiguous. The
tests on stock market volatility have the same conclusions as in panel A,
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Table 10

0.05 critical values for tests for a unit root in the autoregressive polynomial of the ARIMA model
based on the normalized bias of the root estimate, where the simulated data follow an
ARIMA(0,1,1) model.®

A. No time trend in model, T(p, — 1)

Moving
Sample  average
size T parameter § AR(1) Z,,(l;) Z,,(l;;) ARMA(L1) AR(/5) AR(/4)° AR(/;3) AR(/})¢

0.8 -116.9 —-130.1 -196.4 ~471 -833 -623 -729 -501

0.5 —485 —449 659 -174 -292 -199 -311 -364

140 0.0 -139 -143 -14.2 —14.7 -144 -166 —161 —358
-0.5 -82 -119 -111 -13.7 -98 -174 -108 -376

-038 -78 -119 -109 -13.7 -88 -~-194 -92 -373

0.8 —252.8 —2854 —556.4 —458 -1086 -—485 -—-751 216

0.5 —-60.6 —410 —668 =195 -291 -163 -299 192

444 0.0 —-142 -144 -147 -157 -143 -152 -149 —186
=05 -84 -129 -128 —14.9 -95 -147 -101 -19.2

-0.8 -76 —-125 -—126 -144 -76 -—131 -83 -—188

B. Time trend in model, T(p, — 1)

Moving
Sample  average
size T parameter § AR(1) Z,,(/,) Z,,(I;) ARMA(L,1) AR(/;) AR(/,)* AR(/};) AR(/;,)¢

0.8 —1304 —143.7 —204.3 -797 -108.8 —1062 —113.9 —1483

0.5 —654 —658 —90.5 ~283 —442 338 —528 -—1083

140 0.0 -209 -218 -210 —226 -224 -283 -278 -1149
-05 -122 -176 -149 -209 -156 -304 -190 -110.8

—-0.8 -113 -174 -144 -205 ~-139 -344 -161 -1159

0.8 —301.6 —350.7 —637.1 —48.1 ~153.5 —-762 —-1150 —41.6

0.5 -895 -704 -119.8 —247 —-454 -265 -—484 379

444 0.0 -217 -222 -231 —-22.5 —-223 -241 -242 -372
-05 -125 -192 -187 -21.9 -146 230 -160 -—364

-0.8 -114 -188 -—185 -214 -11.8 -204 -—135 -—36.8

#These values are interpolated from tables 4 and 5 in Schwert (1987). They are the 0.05 fractiles
of the sampling distribution of the normalized bias T(p — 1) against the alternative hypothesis
that the process is stationary around a constant mean (panel A), or that the process is stationary
around a time trend (panel B). Based on 10,000 replications of an ARIMA(0,1,1) process,

(Y,=Y,_)=e—06_,, t=-19,...T,

where the first twenty observations are discarded to eliminate startup effects. The AR(1) test is
based on egs. (1) or (7) with p =1; the Phillips corrections to the AR(1) test Z (/) use egs. (4) or
(9) with / lags of the residual autocovariances in (5), where / is defined in (13a) and (13b); the
ARMAC(1,1) tests use egs. (3) or (8); the AR(/,) and AR(/},) tests use egs. (2) or (7) with /, and
1}, lags, respectively, where /, and /;, are defined in (13a) and (13b).

except all of the tests are now ambiguous (i.e., they would reject a unit root
except when 6 = (0.8 in table 10). In addition, three of the tests are ambiguous
for the unemployment rate UN, and one test is ambiguous for both industrial
production IP and the P/E ratio for the S&P portfolio.

Thus, the results in table 11 are similar to the r-test results in table 8. Even
for series like the unemployment rate (UN) and the nominal bond yield
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Table 11

Tests for the presence of a unit root in the autoregressive polynomial of the ARIMA model for the
logarithms of macroeconomic time series based on the normalized bias of the root estimate,
January 1949 to December 19852

A. No time trend in model, T(p, — 1), Dickey~Fuller 0.05 critical value = —14.2

Series ARQ1)  Z,,(l;) Z,(;p) ARMA(L /L, —1) AR(/y) AR(/)° AR(/;;) AR(/;)¢
MBASE 1.48 1.48 1.47 1.48 1.23 147 0.53 131
BAA -0.55 -117  -172 -1.22 -084 -171 -118 -340
CPI 1.53 1.50 1.46 1.52 0.34 133 0.17 1.08
PPI 1.32 1.24 1.12 1.29 0.42 1.06 0.25 0.81
WAGE 0.58 0.58 0.57 0.58 041 0.56 0.29 0.54
pPoP 041 0.40 0.39 0.41 0.10 0.34 0.03 0.18
LAB 0.59 0.63 0.63 0.63 0.92 0.65 0.66 0.61
EMP 0.45 0.44 0.42 0.42 0.34 0.43 0.46 0.51
UN -339 -788 -1014 ~8.34 —-700 -1743* -549 -10.73
IP -0.81 -1.04 -1.04 -1.01 -063 -131 -~062 —0.86
SP500 -223 -233 -226 -237 —-216 —-244 220 -204
P/E -642 726 -152 -8.22 -749 —-901 —-592 -559
D/P —-741 -7.99 =777 —8.48 —-7.86 —881 —-724 —746
SIG ~159.37* —161.44* —255.62* -23.50* —96.05* —5544" —76.12% —30.28"
GD 1.12 1.10 1.07 1.01 0.26 0.98 0.09 0.59
GNP 0.55 0.55 0.55 0.47 0.36 0.55 0.38 0.55
GNP82 —0.46 -0.51 -0.49 —0.65 -033 -050 -052 -0.57
B. Time trend in model, T(p, — 1), Dickey~Fuller 0.05 critical value= —21.8
Series  AR(1)  Z,,(ly) Z,.(l;) ARMAQ,/,—1) AR(/) AR(/)* AR(l;,) AR(l,)*
MBASE —0.65 -064 -073 —0.66 ~063 —-066 -047 -0.84
BAA -419 -874 -12.79 -9.10 -5.76 ~1218 —829 -—35.08
CPI -0.21 -044 -0.83 —0.48 -020 -075 -031 -1.78
PPI -099 145 -212 -1.56 -084 -202 -084 261
WAGE —0.56 -072  -120 -0.75 -068 —-093 -096 —1.86
POP —-420 —467 538 —4.62 -199 -553 —-18 —7.66
LAB —6.58 —-490 -4832 —4.36 —-6.77 —463 -657 —540
EMP —5.68 —6.21 —-7.66 -711 —-656 —-844 —634 789
UN -871 -—16.73 —20.88* -17.15 —13.41* —-3436% —12.56 -31.15
Ip -562 —13.09 -1336 -16.29 —-10.13 -23.43* -7.78 -13.26
SP500 -8.17 —-898 -—-876 -9.381 -873 -1019 -791 -8.04
P/E —-12.68 —1438 -1492 —-15.80 —14.46* —1793 -1321 -13.71
D/P ~7.23 =777 -1747 -8.30 -772 -863 —-700 -713
SIG —171.34* —175.96* —264.76* —30.96* —108.50* —64.60* —91.53* —40.51*
GD -0.86 -117 -1.60 —0.84 -091 -307 -109 -6.60
GNP —1.66 -208 -193 -212 -183 -288 -177 -289
GNP§2 -512 —-889 -1781 —14.67 -728 —-1233 —-6.50 -10.07

#See table 1 for a definition of the variables. The ending point for all series is December 1985.
GD, GNP, and GNP82 are measured quarterly; other series are monthly.

®Superscript plus signs indicate tests where one would reject the unit root hypothesis for all of
the processes in table 10 at the 0.05 level. Asterisks indicate tests where one would reject the unit
root hypothesis using the Dickey—Fuller critical value, but not using the critical values for all of
the processes in table 10 at the 0.05 level.
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(BAA), the tests do not reject the unit root hypothesis. For stock market
volatility (SIG), the conclusion of the test depends on the type of ARIMA
model that generated the data.

Table 12 contains normalized bias tests for unit roots in the first differences
of the variables (similar to the T-tests in table 9). As in table 11, tests that
reject the unit root hypothesis. for all of the values of the moving average
parameter in table 10 are indicated with a plus (*), and tests that reject using
the Dickey—Fuller critical value (i.e., with § = 0), but not for other values of
the moving average parameter are indicated with an asterisk (*) (cases where
the outcome of the test depends on the process that generated the data).

In panel A of table 12, most of the tests reject the unit root hypothesis
using the Dickey—Fuller critical values (6 = 0 in table 10). For the CPI and
the GNP deflator inflation rates, none of the tests would reject the unit root
hypothesis for an ARIMA(0,1,1) process with = 0.8. In addition, the
highest-order adjusted autoregressive test AR(/;,)¢ does not reject the unit
root hypothesis for the growth in the monetary base (MBASE) or for
population growth (POP).

The tests in panel B of table 12 that include a time trend yield similar
conclusions to the results in panel A, For CPI and GNP deflator inflation
rates and for population growth, the conclusion of the test depends on the
type of ARIMA model that generated the data. The autocorrelations of these
series in table 4 look like the autocorrelations of an ARIMA(O,1,1) process
with § =~ 0.8 in table 5, which suggests that the appropriate critical values to
use in table 10 are for the case where #=0.8. In this case, the unit root
hypothesis should not be rejected, even though conventional Dickey—Fuller
tests would reject the unit root hypothesis. For several of the tests for the other
series, the conclusion of the test procedure depends on which test is used.

4.5. Summary of test results

Several patterns emerge from the test statistics in tables 8, 9, 11, and 12.
First, for the levels (of the logarithms) of the data, almost all of the series
behave like integrated processes. Virtually all of the tests in tables § and 11 are
consistent with a unit root in the autoregressive part of the ARIMA model.
The only exception to this rule is for stock market volatility SIG, where the
results of the unit root test depend on the type of ARIMA model that
generated the data.

Second, for the growth rates (the first differences) of the data, there are
several series where the unit root tests are ambiguous, depending on the
ARIMA model that generated the data. For these series, where the autocorre-
lations of the growth rates in table 3 are small and positive for many lags (like
the inflation rate of the CPI or of the GNP deflator, and for population
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growth), the tests in tables 9 and 12 suggest that there is another unit root in
the autoregressive polynomial. Using the critical values implied for an
ARIMA(0, 1, 1) process with § = 0.8, most of the tests in table 9 and 12 do not
reject the unit root hypothesis for these growth rates. In these cases, conven-
tional Dickey—Fuller tests and most of the variants developed by Phillips
(1987), Phillips and Perron (1986), and Said and Dickey (1984) would lead to
false conclusions.

Finally, when a mixed ARMA model is used to conduct the unit root tests,
the results are more consistent with a unit root in the autoregressive part of the
model for the growth rates (first differences) than the tests based on a pure
autoregressive representation of the data. Given the numerous reasons to
believe that economic time series contain moving average components, this
possible evidence of unit roots in the growth rates of so many variables is
noteworthy.

5. Consequences of unit root tests for economic modeling

As discussed by Nelson and Plosser (1982) and many subsequent authors,
the conclusion that an economic time series contains a unit root in the
autoregressive polynomial of its ARIMA representation has important conse-
quences for dynamic economic models. For example, with a unit root there is
no deterministic long-run growth path to which the economic variable tends to
revert. Moreover, uncertainty about the level of an economic series grows
larger indefinitely as one forecasts further into the future. Thus, for an
integrated series (containing a unit root), it is not meaningful to discuss the
‘long-run’ mean or variance of the process. In terms of business cycle
modeling, a unit root means that part of the innovation to the series causes a
permanent change in the level of the series.

Following Nelson and Plosser, many authors have found that aggregate
output series (such as GNP, IP, GNP82, POP, LAB and EMP), aggregate
price level series (such as CPI, PPI, and GD), and other aggregate nominal
series (such as MBASE, WAGE, and SP500) contain a unit root. What is
perhaps surprising about the results in tables 8 and 11 is that variables that are
expressed as percentages or ratios, such as the bond yield BA4, the unemploy-
ment rate UN, the price/earnings ratio P/E and dividend yield D/P for the
S&P composite portfolio, and the volatility of stock returns SIG, also seem to
be non-stationary.’

"Series like these have been studied in detail by Shiller (1981), Poterba and Summers (1986),
and others, often with the conclusion that the series are stationary using conventional
Dickey-Fuller tests.
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Even more surprising is the evidence that growth rate series, such as
inflation in the CPI or the GNP deflator and population growth, may contain
a unit root.® If these growth rates follow ARIMA(0,1,1) processes, then the
permanent effect of this period’s innovation on the level of future growth rates
Y, 1s

E(Y,,,|Y,...)=E(Y,,|Y,_1,...) + (1= 8)u, for I>0. (14)

Based on the estimates of the ARIMA(0, 1,1) model in table 6, these series all
have moving average coefficients # close to 1, so that the permanent effect is a
small fraction of the total innovation. Nevertheless, to the extent that one
concludes that series like interest rates, inflation rates, or stock market
volatility follow integrated ARIMA processes, it is not meaningful to talk
about a ‘long-run’ or ‘steady-state’ level for these series.

The source of the nonstationarity in these variables is worthy of further
consideration. For example, technological change that is non-stationary could
cause series such as the CPI to seem non-stationary merely because the
Bureau of Labor Statistics fails to adjust for changes in ‘quality’ accurately.’
On the other hand, such non-stationary ‘measurement errors’ in the price level
should not induce non-stationary behavior in inflation rates or nominal
interest rates. Perhaps the CPI inflation rate is non-stationary because the
money growth rate is non-stationary; such a conjecture is the basis for tests of
‘co-integration’ [i.e., a common unit root in two series, such that a regression
of one non-stationary series on another yields stationary errors, see Engle and
Granger (1987) and Stock and Watson (1987)]. In fact, it is possible that all of
these factors play a role in causing the observed behavior of the CPI, although
it would be difficult to identify the relative importance of different sources of
non-stationarity without additional theory and data.

To the extent that changing demographic characteristics or measurement
practices cause non-stationarity in observed economic time series, most
economists would properly ignore such behavior, since it has little to do with
their economic theories. On the other hand, if non-stationarity results from
integrated processes for technology or tastes, economists who are interested in

#Although Fama (1975) and Nelson and Schwert (1977) model the inflation rate and the
short-term nominal interest rate as series containing a unit root. There is even some evidence that
is weakly consistent with the hypothesis that the real interest rate (the nominal rate minus
inflation) contains a unit root.

°To the extent that innovations are not perfectly correlated with the depreciation of the existing
stock, technology is an integrated process.
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(long-run) growth models or (short-term) business cycle models can make
serious errors is using data to calibrate their misspecified theoretical con-
structs. Only careful analysis of the data, including knowledge of the measure-
ment practices used to construct the data, can hope to resolve these questions.

6. Summary

This paper examines the time series behavior of seventeen important macro-
economic variables. Sample autocorrelations of the logarithms, and the first
and second differences of the logs of these variables suggest that many of these
variables are generated by non-stationary ARIMA processes. There are
numerous economic and statistical reasons to believe that economic time series
contain moving average components. Schwert (1987) shows that, when con-
ducting formal tests of non-stationarity (unit root tests), it is important to
consider whether the underlying process contains a moving average compo-
nent, since the distribution of the unit root test statistics can be far different
from the distributions reported by Fuller (1976). Even the asymptotically
correct extensions suggested by Said and Dickey (1984, 1985), Phillips (1987),
and Phillips and Perron (1986) are affected by the process generating the data
in large finite samples. In particular, if the series is generated by an
ARIMA(0,1,1) process with a large moving average parameter (where the
sample autocorrelations of the data are small and positive for many lags),
most of the tests considered depart substantially from the distributions calcu-
lated by Dickey and Fuller. Estimates of ARIMA(0,1,1) models for the
growth rates of the variables studied in this paper indicate that this model may
describe many monthly or quarterly macroeconomic variables. In that case,
use of the Dickey-Fuller critical values would reject the hypothesis of non-
stationarity far too often.

The unit root tests developed by Dickey and Fuller, and the extensions
mentioned above, are applied to the levels and first differences of the seven-
teen economic time series. In cases where it seems that the series is generated
by mixed ARIMA processes with large moving average coefficients, such as
the monthly CPI inflation rate or the log of the monthly standard deviation of
returns to the S&P composite portfolio, the unit root tests reject non-
stationarity using the Dickey~Fuller critical values, but not using the critical
values calculated by Schwert (1987). Thus, the conclusions of these unit root
tests critically depend on the assumption that the underlying process is a pure
autoregressive model. Given the important implications that non-stationarity
can have for economic modeling, one should consider the correct specification
of the ARIMA process before testing for the presence of a unit root in the
autoregressive polynomial.
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