Journal of Monetary Economics 4 (1978) 637-660. © North-Holland Publishing Company

MONEY, INCOME, AND SUNSPOTS:
MEASURING ECONOMIC RELATIONSHIPS
AND THE EFFECTS OF DIFFERENCING

Charles I. PLOSSER and G. William SCHWERT*
University of Rochester, Rochester, NY 14627, U.S.A.

This paper discusses the question of whether economic time series regression models should be
estimated between the levels or the changes of the variables of interest. We argue that many
economic models should be estimated between the changes of the variables, rather than the
levels of the variables. In addition, comparisons of the levels and changes regressions can be
used as a crude test of model specification. These issues are illustrated with examples from
Friedman and Meiselman’s (1963) study of annual income and consumption and with data on
sunspot activity from 1897-1958.

1. Introduction

It is common to find economic relationships which are formulated and
empirically investigated in terms of the levels of time series variables. Some
simple examples might be money and prices, or income and consumption.
Although at the theoretical level most model builders recognize that their
models can be equivalently formulated in terms of the changes in the
variables, for example the change in money and the change in prices, many
do not admit this equivalence when it comes time to estimate the model. The
reason appears to stem from the fact that many time series regressions that
are computed using the levels of economic variables produce strong re-
lationships as measured by R* or the adjusted R?, R2 but when the same
model is estimated in the changes, the relationship becomes weak and may
even disappear entirely. This phenomenon has led some people to question
the use of differencing because, they argue, it somehow removes part of the
relationship between the variables.

This paper focuses on the effects of differencing in linear regression models.
Although some of the technical aspects of this paper are well known in the
econometrics literature, we feel that they are worthy of emphasis because
they are often overlooked or ignored in much applied work. Our point of

*Plosser’s participation in this research occurred while he was at the Graduate School of
Business, Stanford University. We have benefited from discussions with Paul Evans, Kenneth
Gaver, Martin Geisel, Michael Jensen, Ben McCallum, Charles Nelson, David Pierce,
Christopher Sims, and Arnold Zellner, but retain responsibility for all errors.



638 C.I. Plosser and G.W. Schwert, Money, income and sunspots

view can be summarized by stating that the real issue is not differencing, but
an appropriate appreciation of the role of the error term in regression
models. This means that if the linear specification of the model is correct, the
model can be estimated in the levels, in the first differences, or in the second
differences with similar results as long as the autocorrelation properties of
the regression disturbances are taken into account. In other words, differen-
cing makes little difference.

On the other hand, we argue that the dangers associated with ignoring the
effects of underdifferencing (that is, insufficient differencing) can be sub-
stantially greater than those associated with ignoring the effects of over-
differencing. For example, if the error term in the first differences regression
1s well behaved (e.g., serially uncorrelated), the error term in the levels (the
underdifferenced) regression follows a nonstationary random walk. This can
cause least squares estimators of the regression coefficients in the levels
regression to be inconsistent. However, the error term in the second
differences (the overdifferenced) regression follows a stationary first-order
moving average process, so the estimators of the regression coefficients are
unbiased and consistent, although they are not efficient.

Section 2 shows the effects of differencing on the linear regression model.
In section 3 we present some examples to illustrate the arguments by
reexamining some ©f the results of Friedman and Meiselman (1963).
Section 4 presents a brief discussion of the relationship of differencing to
certain types of specification errors; in particular, the effects of differencing
on models where the variables are measured with error. Finally, section 3
provides some concluding remarks.

The question of whether to use the differencing transformation has
important ramifications for empirical work in many areas of economics. Our
goal in this paper is to clarify the issues related to differencing so that the
empiricist can assess the costs and benefits of using differencing as an
integral part of his data analysis. We show that differencing can often lead to
important insights concerning the relationships between time series variables.

2. Some statistical issues associated with differencing

Many economic variables have a strong tendency to trend through time.
Therefore, the levels of these variables can be characterized as nonstationary
since they do not have a constant mean over time. The statistical problems
associated with the estimation of regression relationships among non-
stationary time series variables are documented by Yule (1926), and more
recently by Granger and Newbold (1974). In particular, Granger and
Newbold emphasize that, in many instances, regressions estimated among
nonstationary variables are found to have residuals which are highly
autocorrelated, as indicated by very low Durbin-Watson statistics.
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Furthermore, they go on to show that usual tests of hypotheses about the
regression coefficients in the presence of autocorrelated residuals can produce
misleading results by increasing the probability of falsely rejecting the null
hypothesis that there is no relationship between the variables (Type I error).!
Although the dangers associated with autocorrelated residuals have been
recognized for some time, we agree with Granger and Newbold that it is
distressing that much applied work consistently ignores these dangers.?

One solution to the problems associated with estimating and interpreting
regression equations among nonstationary variables which is tentatively
suggested by Granger and Newbold is to difference the regression re-
lationship until each variable is stationary prior to estimating the regression
equation. The use of the difference transformation eliminates a linear time
trend and/or a stochastic trend (such as exemplified by a random walk) from
each of the variables in the regression relationship.

Consider the effect of differencing on the properties of the regression
model. For example, suppose a correctly specified regression model is given
by

y=0+px+¢, t=1,2,...,T, (2.1)

where {¢} is a sequence of independent and identically distributed random
variables, independent of {x,}, with mean zero and constant variance o7;.
Furthermore, note that we have not made any assumptions about the
properties of y, or x,. They might be the levels or the changes of economic
variables. In fact, economic theory does not in general tell us which
transformations of the variables are linearly related with a stationary distur-
bance term, yet the stationarity of the error term can be a very important
factor in the estimation of the regression equation. The ordinary least
squares estimator for f§ is:

ﬁ:fo’,/Zfﬁ (2.2)

where a tilde ‘™ indicates the variables are measured as deviations from their
sample means. This estimator for § is consistent, unbiased and efficient.

'Vinod (1976) presents bounds for t-ratios in the presence of autocorrelated errors which
depart substantially from the Student t-distribution in some cases.

2Although autocorrelated residuals in the levels regression may indicate other types of
misspecification, for example, omitted variables, in this paper we are primarily concerned with
the specification of the disturbance term and the effects of differencing. Therefore, we assume
that all of the relevant variables have been included in the equation and the functional form of
the relationship is correctly specified.
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2.1. The effects of overdifferencing

Now suppose we difference (2.1) to obtain
Ay, =o'+ pAx, +u,, t=23,..,T, (2.3)
where
u,=A¢,=¢,—0¢,_,, (2.4)

and 4=(1-L), 0=1 and L is the lag operator such that Liz,=z,_,. Eq. (2.3)
is the regression equation that relates the changes in y, to the changes in x,.
Furthermore, the changes in these variables are related in the same way as
the levels of the variables, except for the constant term. Therefore, whether
we estimate (2.1) or (2.3) we are estimating the same parameter, 8. The only
way that (2.3) differs from (2.1) is in the constant term and the error
structure. The error structure of (2.3) is a first-order moving average process
(MA(1)) as seen in (2.4), with a MA parameter equal to one.® Since (2.1) is
the correct specification of the relationship, (2.3) can be referred to as the
overdifferenced model and the moving average nature of the errors in (2.4),
with 0=1, is characteristic of the type error structure found in over-
differenced regression equations.*

Suppose that we estimate (2.3) using ordinary least squares. In this case
the estimator for f is

T

B Y azaj, / Y (4%,)%. (2.5)
=2 =2

This i1s an unbiased and consistent estimator of f. Conditional on {x,}, the
usual least squares estimator of the sampling variance of B* is

2=y 3 3 s 6)

where i, represents the least squares residual at t.° Unfortunately, the
estimator in (2.6) may be biased if the disturbances are autocorrelated. In
this particular case, where the disturbances follow the MA(1) process (2.4)

*This MA(1) model implies a first-order autocorrelation p, = —0/(1+6%)=—-05 for the
disturbances in (2.4). This is roughly equivalent to a Durbin-Watson statistic of 3.0.

*In the more general case where the disturbances in (2.1) follow a stationary autoregressive-
moving average process, overdifferencing introduces a unitary root into the moving average
structure of the disturbances in (2. 3).

*The matrix equivalent to (2.6) is 62(4%' 4%)" !
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with 8=1, it 1s straightforward to show that an unbiased estimate of the
sampling variance of B* conditional on {x,} is

T
52(3*)=55(1—/31)/Z (4%,)%, (2.7)

where 62 is an unbiased estimate of 2 and p, is an estimate of the first-
order autocorrelation coefficient of the 4x, series.® It is interesting to note
that if x, is a random walk, then Ax, is serially uncorrelated (4, =0), and the
usual least squares formula (2.6) yields an unbiased estimate of the sampling
variance even though the disturbances are autocorrelated. If the changes in
x, are positively autocorrelated, the usual formula (2.6) overestimates the true
sampling variance of B*. If changes in x, are negatively autocorrelated, the
usual formula underestimates the true sampling variance of B*.”

If the error structure is known, a generalized least squares procedure
should be used to take account of the moving average process of the
disturbances in {2.4). However, if the model is known to be overdifferenced (6
=1), the generalized least squares procedure is equivalent to simply estimat-
ing the model in terms of the levels of the variables y, and x,.® Unfortunately,
rarely is this much known about the error process. Therefore, a more
practical approach would be to estimate the moving average parameter 8 to
see whether it is close to one. This approach is feasible, although there are
some statistical problems of estimating the MA parameter when 0=1.°
Plosser and Schwert (1977) perform Monte Carlo experiments of the joint
estimation of f and 0 in (2.3) and (2.4). Even though there are certain
problems with estimating 6 when it is equal to one, the estimates of § are not
adversely affected. Furthermore, the efficiency of the resulting estimator for
is improved relative to ordinary least squares estimator in (2.5) which is

®Equation (2.7) is obtained from the correct formula for the sampling variance of the least
squares estimator, (A%’ AX)™' AX'ZA% (4% 4%)”!, where £ is an unbiased estimator of the
covariance matrix of the regression disturbances. Note that if #, represents the least squares
residual, the expression

IR e
T-35"
does not yield an unbiased estimate of o7 if the Ax, series is autocorrelated.

"If there is more than one regressor, the sampling variance of B* will depend not only on the
autocorrelation structure of the individual regressors, but on the covariances among them as
well. Consequently, it would be very difficult to predict a priori the direction of the bias
contained in the usual least squares formula for the sampling variance of B* in these more
complicated circumstances.

#Maeshiro and Vali (1977) prove this equivalence.

When =1 the MA(1) process in (2.4) is noninvertible; it does not have an infinite
autoregressive representation. Further discussion can be found in Box and Jenkins (1976) or
Plosser and Schwert (1977).
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calculated ignoring the moving average process for the disturbances.
Therefore, the costs associated with overdifferencing may not be large when
care is taken to analyze the properties of regression disturbances.

2.2. The effects of underdifferencing

Now consider the effects of underdifferencing. In other words, rather than
estimating the relationship between y, and x, we consider the regression
equation

Y=o'+pX,+n, t=0,1,2,...,T, (2.8)

where
H=pn,-1+¢, (29)
and

AY, =y, 4X,=x, and p=1.

In other words, the correct model is in terms of the changes in Y, y,, and the
changes in X,, x,, but we estimate (2.8) instead. The identifying characteristic
of the underdifferenced regression eq. (2.8) is that the disturbance term is
nonstationary. In this case, the disturbances follow a first-order autoreg-
ressive process with p =1, and eq. (2.9) describes a sequence of disturbances
{n,} which follow a random walk.'?

Suppose that we try to estimate (2.8) using ordinary least squares. The
usual formula provides the estimator for f:

T T
p=73 Xer/ Xz (2.10)
=0 [t=0

Because {#,} is nonstationary, the sampling distribution of this estimator is
not well behaved. For example, since y, does not have a finite unconditional
mean or variance, the distribution of the estimator ' does not have finite
moments.!! Furthermore, the estimator of 8 given in (2.10) may be incon-

1°In the more general case where {¢} follows a stationary autoregressive-moving average
process, underdifferencing leaves a unitary root in the autoregressive structure of the disturbance

which causes the disturbances to be nonstationary.
'1Since the level of a random walk is the accumulation of all past shocks,

o
n= Z & —i»
i=0

the unconditional distribution of #, does not have finite moments. Alternatively, the distribution
of B given the ‘initial condition’, n,, is not independent of 5, for any sample size.
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sistent. A necessary condition for the consistency of ' is that:
1z I
plim[* ﬁf/ZXf]:O, (2.11)
T—1 =0 t=0

where #, is the ordinary least squares residual from (2.8). If 5, follows a
random walk as in (2.9), the numerator of (2.11) goes to infinity as T— co.
Nevertheless, (2.11) could still converge to zero if the denominator goes to
infinity faster than the numerator as the sample size increases.’? If this does
not occur, the estimator B’ is inconsistent. Consequently, under certain
conditions estimating regression relationships in the presence of nonsta-
tionary errors could result in estimates that are seriously misleading.

A logical question to ask is under what conditions is ' consistent? One
simple case occurs when X, is a linear time trend. Under these circumstances

T_,X? goes to infinity with T3. Therefore, it is of higher order than T and
the expression (2.11) converges to zero as T — 0.

An alternative method of estimating (2.8) is to apply a Cochrane-Orcutt
(1949) transformation, or estimate the parameters o”, § and p jointly using a
maximum likelihood procedure. One way of doing the joint estimation
would be to consider (2.8) as a transfer function model of the type discussed
in Box and Jenkins (1976). If the resulting estimate of p is close to one, as it
should be in this case, differencing would be indicated, leading to the correct
model in (2.1).

Thus, the costs associated with underdifferencing can be serious since the
error term does not have a stationary distribution. Nevertheless, careful
analysis of the properties of the error terms should lead to the correct
specification of the model.

3. Some economic examples

3.1. The quantity theory of money

In order to illustrate the points brought out in the previous section, it is
useful to consider some simple examples. Our first example is motivated by
the classical quantity theory of money. In its most simple form, the model
can be written:

y=v+m, (3.1)
where y,v, and m denote the logs of nominal income, velocity and money,
"2More precisely, the sequence 1/(T~1)3 T /2 is of order T; therefore, the power of T that

is required to bring the probability limit of the expression T7?-Y 7 X? to a nonzero constant
must be greater than one, p>1.
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respectively. The classical quantity theory implies that m and v are un-
correlated,'® and regressions of .y, on m,,

Y=o+ pm+e, (3.2)

should yield a slope coefficient near unity, 1.

If the slope coefficient is unity, the constant term in this regression, «, is
the average value of the log of velocity over the sample period, and the
disturbance, ¢,, is the deviation of the log of velocity from this average value
in each period. In this case, the error structure associated with this regression
has the same stochastic characteristics as the log of velocity.

The quantity equation as stated in (3.1) can be rewritten as

Ay =Av+Am, (3.3)

where Ay, 4v and Am denote the changes in the logs of nominal income,
velocity, and money, that is, their rates of growth. As before, the quantity
theory would imply that regressions of 4y, on Am,,

Ay, =o'+ fAm, +u,, (3.4)

should yield a slope coefficient near unity. If f=1, the intercept « in (3.4)
could be interpreted as the average rate of growth of velocity, and the
disturbances have the same stochastic properties as Av,.

In this context it makes no difference whether the relationship is measured
between y and m, or between Ay and Am, as long as the stochastic properties
of the error term are taken into account. Gould and Nelson (1974) argue
that annual velocity data from 1869 to 1960 are well approximated by a
random walk. Thus, if the stochastic properties of the error term are ignored
and the error term ¢, is nonstationary, then regressions estimated between y
and m may produce misleading results.

Using the data on annual income and money provided in Friedman and
Meiselman (1963), we estimate the contemporaneous relationship between
the log of income, y,, and the log of money, m,, several different ways. The
results are summarized in table 1. The first column in table 1 gives the
results of the levels regression of y, on m, Note that the coefficient on m,
appears to be precisely estimated and significantly different from unity at the
19 level when the usual test statistics are applied. However, there appears to
be significant residual autocorrelation as evidenced by a first-order serial
correlation coefficient (r;) of 0.82. This corresponds to a Durbin-Watson
statistic of approximately 0.36.

'*Some empirical validation of the independence of changes in velocity with respect to
changes in money can be found in Gould et al. (1978).



C.I. Plosser and G.W. Schwert, Money, income and sunspots 645

Table 1
Regression models of the log of income on the log of money: 1897-1958*

Regression model

(1) (2) (3) 4) (5)
Time Cochrane- First Second

Levels trend Orcutt differences differences
Variable y y y Ay 4%y
Constant 2257 36.80 —1.078 —-0.016 0.0003

(0.161) (6.67) (1.561) (0.012) (0.012)
m 0.842 1.168 1.127

(0.015) (0.064) (0.122)
Aam 1.141

(0.126)
A*m 1.193
(0.194)
t —0.020
(0.004)
5,° 0.956
(0.029)

R? 0.980 0.986 0.994 0.575 0.384
¢} 0.0163 0.0114 0.0048 0.0049 0.0088
r 0.82 0.74 0.12 0.12 —0.36

(0.13) (0.13) (0.13) (0.13) (0.13)

*Standard errors are in parentheses; R* is the coefficient of determination, adjusted for
degrees of freedom; 67 is the residual variance; and r, is the first-order autocorrelation
coefficient of the residuals with its large sample standard error in parentheses.

First-order autoregressive parameter for the error structure. The standard errors for the
parameters in this regression are based on asymptotic distribution theory.

Suppose we hypothesize that both y, and m, contain deterministic time
trends, but they are independént of one another except for the common
trend. This implies that the strong relationship obtained by regressing y, on
m, is spurious due to the omission of an important variable, time. An
alternative rationale for this specification might be that the time trend
variable proxies for some omitted variable (possibly velocity or technological
progress) that has a deterministic trend. Such a hypothesis suggests the
inclusion of a time trend variable in the regression of y, on m,,

Y=o+ fm, +yt+¢,. (3.5)
The estimate of this time trend model in table 1 indicates that including the
time trend variable increases the coefficient on m, substantially and the
estimated standard error of the coefficient is larger. Based on usual test

«
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statistics it seems that f is significantly greater than unity at conventional
significance levels. However, it is important to note that including the time
trend does not eliminate the residual autocorrelation. The first-order serial
correlation coefficient is 0.74 (a Durbin—Watson statistic of approximately
0.52).

A third approach to estimating the relationship between y, and m, without
differencing the data is to assume that the residuals follow a first-order
autoregressive process and jointly estimate the parameters. The third column
of table 1 presents estimates of the Box-Jenkins transfer function model,

y=a +ﬁmz +1,, (363)
’7z=P1’7:—1+8n (36b)

which is analogous to the Cochrane—Orcutt (1949) estimation procedure. The
estimate of the autoregressive coefficient p, is 0.956 with an estimated
asymptotic standard error of 0.029, so p, seems very close to unity.'* The
‘Cochrane-Orcutt’ estimate of the coefficient of m, is closer to the ‘time trend’
estimate than the ‘levels’ estimate given by the regression of y, on m,. As one
would expect, the standard error of this estimate is also larger and indicates
that the coefficient is not significantly different from unity at the 59 level of
significance. Finally, the residuals no longer display any significant autocor-
relation (at lag one).

Since p,; is so close to one in the Cochrane-Orcutt regression, the first
differences regression of Ay, on Am, in (3.4) should yield similar results. As
seen in column 4 of table 1, the estimated coefficients, the estimated standard
errors, and the variance of the residuals from these two models are almost
identical. The constant term in the “first differences’ regression corresponds to
the coefficient on the time trend variable in the time trend regression.'?
While the estimates of this trend parameter are similar in the time trend and
first differences models, the estimated standard error of this parameter is
much larger for the first differences regression. This reflects, at least in part,

*If p, =1, p, is downward biased and the asymptotic standard error tends to understate the
sampling variability of p, in finite samples. Zellner and Plosser (1977) discuss these issues in the
case of univariate autoregressive models. Also, it should be noted that R? in the Cochranc-
Orcutt regression is the proportion of the sample variance of y, explained, not the proportion of
the sample variance of (y,—/4,y,_) explained by the regressor. Thus, if p, is close to one, R?
will be close to one, even if the regression coefficient is zero.

'5Consider the first difference of equation (3.5):

y,fy,,,:(o(+[fm,+7t+z,)~(:x+/3m,,, +)’(t‘1)+5171)
=)+ plm—m_ )7t —t+1)+ (5 —5-,),
Ay, =7+ fAm, + 4e, ,

so 7y is the constant term in the first differences regression.
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the residual autocorrelation in the time trend regression which causes the
estimated standard errors to be biased downward for that model. Thus, there
is no evidence of a significant negative trend in velocity over time when the
standard errors are estimated correctly.!®

Note that the R? statistic for the differences regression is lower than for
the levels regressions. While many would be disappointed by this relative
‘lack of fit’ in the differences regression, such disappointment is not justified.
If the regressand y, is nonstationary, the sample variance of the levels of y, is
likely to be much larger than the sample variance of the differences Ay,.
Therefore, for the same residual variance, R? is larger in the levels than the
differences.!”

The residual variance ¢ is the relevant basis for comparing the levels
regression with the differences regression. Note that the error term in the
levels regression, ¢, is related to the error term in the first differences
regression, u, =g —¢,. . If the error term for the levels regression is serially
uncorrelated, the residual variance for the differences regression is twice as
large as the levels regression, 62 =202. On the other hand, if the error term
for the levels regression, ¢, follows a random walk, ¢ =) u,_,, the error
term for the differences regression, u, is serially uncorrelated, and the
residual variance is much larger for the levels regression than for the
differences regression.

In order to show that differencing should not matter in a properly
specified linear regression model, suppose that we difference again and
regress A%y, on A’m,. This ‘second differences’ regression is an over-
differenced model if the first differences model is well specified, so it should
have moving average errors. Inspection of the final column in table 1 bears
these suspicions out. Note that the estimated coefficient of 42m, is much
closer to the values presented in columns 3 and 4 than those in column 1.
This supports the arguments we presented in the previous section. That is,
even though the relationship is overdifferenced, as evidenced by the negative
autocorrelation in the residuals and the increased residual variance, the
estimates of the regression coefficient and its standard error are more in
accord with the seemingly well-specified models (columns 3 and 4) than are
the results from the underdifferenced model (column 1).

3.2 The quantity theory of sunspots

Now let us consider another model which hypothesizes that income is
related to sunspots. Although most economists would dismiss such a theory
out of hand, variants on this theme have been taken quite seriously by some,

"*This is analogous to the findings of Gould and Nelson (1974) that there is no significant
negative drift in the random walk model for the log of velocity.

!"Pierce (1975) discusses some related limitations of conventional goodness-of-fit measures,
and Pierce (1977b) proposes alternative measures of goodness-of-fit.
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Table 2
Regression models of the log of income on the log of accumulated sunspots: 1897-1958.2

Regression model

(1) (2) (3) 4) (5)

Time Cochrane- First Second
Levels trend Orcutt differences differences
Variable y y y Ay A%y
Constant 6.305 66.66 19.10 0.043 —0.002
(0.284) 9.35) (38.07) (0.017) (0.016)
s 0.717 0.140 0.124
(0.042) (0.080) (0.146)
As 0.140
(0.124)
A%s —0.049
(0.202)
t 0.040
(0.005)
i 0.995
(0.025)
R? 0.827 0914 0.986 0.00S —0.016
62 0.1435 0.0718 0.0118 0.0116 0.0144
ry 0.90 0.91 0.38 0.37 —0.21
(0.13) 0.13) (0.13) (0.13) (0.13)

Note: For footnotes see table 1.

including Jevons (1884). We might refer to this theory as the ‘quantity theory
of sunspots’. In particular, we are concerned with the relationship between
the log nominal income, y,, and the log of accumulated sunspots, s.'® One
way of proceeding would be to estimate the levels regression of y, on s,. In
column 1 of table 2, we present the results of this calculation. The results of
this levels regression are striking at first glance. The coefficient of s, has a -
statistic of 17.1 and is significantly different from zero at the 19 level using
the usual test procedure. The adjusted R* is 0.827, which suggests that the
log of accumulated sunspots explains over 829 of the variance in the log of
nominal income. Closer inspection, however, reveals that the residuals in this
regression are highly autocorrelated (r;, =0.90). In the second column we
include a time trend variable and find that the coefficient of s falls
substantially, but it is significant at the 109, level based on a conventional ¢-
test. The time trend coefficient is positive and has a very large t-statistic,
indicating that the trend in both income and accumulated sunspots may be

'8 Another way of stating this theory is that the rate of growth of income is affected by the
level of sunspots. Therefore, the level of income is determined by total sunspots since 1897. The
data are monthly averages for the year and are taken from Jacobs (1960).
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an important omitted variable in the levels regression; however, the residuals
from the time trend model are highly autocorrelated.

The Cochrane-Orcutt model estimates are given in column 3. Note that p,
is very near 1 and that the coefficient of s, is reduced, and no longer different
from zero at the 109, level of significance.!® Similar conclusions are reached
about the effect of accumulated sunspots on income from the first differences
regression of Ay, on 4s, (column 4), or the second differences regression of
4%y, on A4%s, (column 5), where the latter model is probably an over-
differenced model. Therefore, it is once again apparent that conclusions
drawn from a model with residuals that behave like a random walk are often
far more misleading than conclusions drawn from a model with residuals
which display the characteristics of overdifferencing.

3.3. The quantity theory versus the income expenditure theory

In order to emphasize the importance of these points, we present one more
set of results. These examples are motivated by the simple models analyzed
in Friedman and Meiselman (1963). Our purpose here is not to defend or
attack the methodology or data used by Friedman and Meiselman. Rather,
we wish to reiterate that the qualitative as well as quantitative results of
empirical work can be influenced by the error structure, and that over-
differencing is not a serious problem if the linear regression model is
correctly specified.

For the purpose of this illustration, we accept the simple dichotomy of the
quantity theory and the income-expenditure theory as put forward by
Friedman and Meiselman. One aspect of their analysis involves regressing
consumption on money and consumption on autonomous expenditures.
They report the results of these regressions for the period 1897-1958, as well
as others for different subperiods, and conclude that the quantity theory
model describes the time series behavior of aggregate consumption more
accurately than a simple autonomous expenditure model.

Tables 3 and 4 present estimates of the regression of the log of con-
sumption, ¢,, on the log of money, m, and the regression of the log of
consumption on the log of autonomous expenditures, qg,, respectively. The
data provided in Friedman and Meiselman (1963) are the basis for these
regressions, but the natural logarithms of the data are used in order to
reduce heteroscedasticity in the residuals. In the context of the simple models
set forth by Friedman and Meiselman, the simple quantity theory suggests
that the coefficient relating ¢, and m, should be near unity. Similarly, the

91t is also interesting to note that some first-order residual autocorrelation remains in this
model. This suggests the presence of additional first-order moving average properties as yet
unaccounted for. Including a moving average parameter does not alter the basic results. The
coefficient of s, remains virtually the same and insignificant, but the variance of the residuals is
slightly reduced.
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Table 3

Regression models of the log of consumption expenditures on the log of money: 1897-1958.7

Regression model

M

2)

(3)

4

(%

Time Cochrane— First Second
Levels trend Orcutt differences differences
Variable ¢ c c Ac A%
Constant 2.138 15.75 1.571 0.002 0.001
(0.128) (6.12) (0.702) (0.0083 (0.008)
m 0.843 0.971 0.896
(0.012) (0.059) (0.062)
Am 0.833
(0.083)
A4%m 0.862
(0.123)
t -0.008
(0.003)
p£.° 0.903
(0.060)
R? 0.988 0.988 0.998 0.623 0.449
62 0.0103 0.0096 0.0021 0.0022 0.0035
r 0.86 0.83 0.22 0.17 —-0.33
0.13) (0.13) (0.13) (0.13) (0.13)"

Note: For footnotes see table 1.

simple income—expenditure model suggests that the coefficient relating ¢, and
a, should also be near unity.2°

The first column of table 3 presents the results of the levels regression of ¢,
on m,. The estimated coefficient is close to one (0.843), but significantly
different from one based on usual significance tests. However, as in the
previous examples, the residuals from this regression are highly autocor-
related. The first column in table 4 contains the estimate of the levels
regression of ¢, on a,, representing the income—expenditure theory. In this
case the estimated coefficient (1.085) seems statistically indistinguishable from
unity at the usual significance levels. One might interpret these results as
suggesting that both theories appear to be reasonably well supported by the
data, although the estimated residual variance (62) is lower, and hence the

e

20Although Friedman and Meiselman use the simple linear regression formulation in relating
both consumption with money and consumption with autonomous expenditures, one can justify
the log linear form if it is assumed that average and marginal velocities are identical for the
quantity theory and that average and marginal multipliers are identical for the income-
expenditure theory. Under these circumstances the log linear form arisesquite naturally with
unitary regression coefficients implied for both models.
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Table 4

Regression models of the log of consumption expenditures on the log of autonomous
expenditures: 1897-1958.2

Regression model

1) (2) (3) 4) (5
Time Cochrane— First Second

Levels trend Orcutt differences differences
Variable c ¢ c Ac A%
Constant 0.374 —~75.80 16.92 0.051 0.4 %1074

(1.49) (2.94) (10.75) (0.008) (0.004)
a 1.085 0.280 0.140

(0.152) (0.053) (0.032)
Aa 0.139

(0.032)
Aa® 0.088
(0.029)
t 0.044
(0.002)
p$,° 0.993
(0.010)

R 0.449 0.955 0.955 0.234 0.123
62 0.4550 0.0368 0.0044 0.0044 0.0056
ry 0.89 0.91 0.33 0.33 -0.32

(0.13) (0.13) (0.13) (0.13) (0.13)

Note: For footnotes see table 1.

R? is higher, for the quantity theory model. However, residual autocor-
relation is present in both models and may be distorting the analysis.

The estimates of the time trend models in column 2 of tables 3 and 4
seem to indicate that an exogenous time trend in the log of consumption
affects the estimates of the levels regressions in column 1 of both tables. The
coefficients of the trend variable are significant by usual standards in both
time trend regressions, and the coefficients on m, and @, change substantially
when the trend variable is added to the levels regression. The coefficient of m,
in column 2 of table 3 increases to become quite close to unity (0.971), and
the coefficient of g, in column 2 of table 4 drops substantially below unity
{0.280). Although this evidence seems to favor the quantity theory versus the
income-expenditure theory, the residuals from both time trend models are
highly autocorrelated indicating the need for further analysis.

If we take the residual autocorrelation into account some rather striking
changes occur. Consider the quantity theory Cochrane—Orcutt regression in
column 3 of table 3. The coefficient of m, changes only slightly relative to the
levels regression in column 1, but the estimate of the standard error of this
parameter is larger, so it is no longer significantly different from one at the
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59 level. This result can be contrasted with the estimate of the income-
expenditure Cochrane—Orcutt regression in column 3 of table 4. The estimate
of the autoregressive parameter, p,, is 0.993, which strongly suggests that
differencing is appropriate. Furthermore, and more important for an econ-
omic interpretation of the results, the coefficient of autonomous expenditures
falls from 1.085 for the levels regression to 0.140. Although the latter figure is
different from zero at the 5% level of significance, it is much less than one.
Thus, the Cochrane-Orcutt regression further reinforces the suspicions about
the income-expenditure regression that were raised by the time trend
regression. The implication is that a 19 change in the rate of growth of
autonomous expenditures is associated with a 0.149% change in the rate of
growth of consumption in the same year on average.

The first differences regressions are similar to the Cochrane-Orcutt re-
gressions in both tables 3 and 4. The slope coefficient estimates, their
standard errors, the residual variances and the residual autocorrelations are
all very close for these two estimation techniques, as would be expected since
py is close to unity in the Cochrane-Orcutt regressions. It is interesting to
remember that the constant term in the first differences regressions cor-
responds to the time trend parameter in the time trend regressions, but since
the first differences models have serially uncorrelated residuals we can use the
estimated standard errors of the coefficients to construct proper tests of the
exogenous time trend hypothesis. The estimate of the constant in column 4
of table 3 is not significantly different from zero, indicating that there is no
significant exogenous time trend in the log of consumption apart from the
quantity theory model. On the other hand, the estimate of the constant in
column 4 of table 4 is significantly positive and quite close to the estimate of
the time trend coefficient in column 2, indicating that there is a significant
exogenous time trend in the log of consumption beyond what is predicted by
the income—-expenditure theory.

Finally, our inferences about the economic significance of the models are
not affected if we consider the second differences regression, which represents
the case of overdifferencing if the first differences regression is the correctly
specified model. Again, overdifferencing is indicated in column 5 of both
tables 3 and 4. The residual variances increase for the second differences
regressions (column 5) relative to the first differences regressions (column 4),
and there is negative residual autocorrelation at lag 1 in both second
differences regressions.

We hasten to point out that we do not regard these results as conclusive
evidence for accepting or rejecting either the quantity theory or the income—
expenditure theory.?! Our purpose is simply to demonstrate how misleading

>'As mentioned previously, we do not wish to become involved in the methodological issues
surrounding the validity of the Friedman-Meiselman approach to model comparison [cf. Geisel
(1975)]. In addition, because of the illustrative nature of our objectives, we have taken some
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the parameter estimates can be when the effects of underdifferencing (non-
stationary disturbances) are ignored.

The examples in this section make it clear that differencing does not affect
the values of the regression coefficients in a correctly specified linear
regression model. By examining the behavior of regression residuals it is
possible to detect underdifferencing, or overdifferencing, if it occurs. In
addition, ignoring the effects of underdifferencing can be a far more costly
error than ignoring the effects of overdifferencing.

4. Specification issues and differencing

Thus far, we have focused on the effects of differencing on the error
structure in a correctly specified linear regression model. In this section we
turn our attention to the effects of differencing on some particular types of
specification errors.

4.1. Measurement error

Many arguments against differencing are related to the measurement error
problem. These arguments seem to be based on the notion that economic
relationships are more or less deterministic, but we only observe the relevant
variables with added noise or measurement error. Therefore, it is argued, the
‘systematic’ portions of the variables are of critical importance and the effect
of differencing is to eliminate these systematic movements, or at least reduce
the importance of such movements relative to the measurement error. The
arguments can be put more precisely by considering a textbook case of the
‘errors-in-variables’ model. Suppose the regression model under consideration
is

ye=PBx¥+¢, 4.1)

but the exogenous variable is measured with error so that the model which
can be estimated is

Ye=Bx +w, (4.2)

liberties with the data on autonomous expenditures provided in Friedman and Meiselman. In
particular, because their time series on autonomous expenditures contains several negative
values, we add a constant to each observation so that the logs of the data can be used. This
obviously distorts the analysis of the income—expenditure model and, therefore, we make no
pretense that we are conducting a viable comparison of the two theories. However, it is
interesting to note that if one carries out the income-expenditure regressions using the raw data,
ignoring heteroscedasticity, the qualitative results are the same. That is, the estimated coefficient
on autonomous expenditures (the estimated multiplier) changes from 5.16, with a standard error
of 0.578, in the levels regression to 0.122, with a standard error of 0.166, in the first differences
regression.
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where

X, =xX+u, 4.3)
and

w, =g, — Bu,, 4.4)
If ¢ and u, are each serially independent, identically distributed random

variables with cov(e,u,)=0, then it is well known that the probability limit
of the least squares estimator obtained from equation (4.2) is

plimB:ﬁ[l—)], (4.5)

1 +(O’3/O‘£¢;

where we assume that x* is stationary, so that ¢2, exists. As long as the
variance of u, is nonzero, this estimator is an inconsistent estimator for §.
Now suppose the differences of y, and x, are used to estimate §,

Ay, = pAx, + Aw,. (4.6)

It is straightforward to show that the probability limit of the least squares
estimator obtained from (4.6) is:

o I 1
P~ i) “n

where p, is the first-order serial correlation coefficient for the unobserved
regressor x;*. This estimator is also inconsistent, and if the unobserved
regressor is positively autocorrelated the probability limit of the slope
coefficient is closer to the true value in the levels regression than in the
differences regression. However, if p, <0 the opposite is true. These results
illustrate that differencing can increase the amount of inconsistency of least
squares estimators under some, but not all conditions.??

It is important to make two additional observations. First, the least
squares estimators are inconsistent for both the differenced and undifferenced
regressions. The real problem here is not differencing, it is measurement

2ZAnother example where differencing does not necessarily increase the inconsistency of least
squares estimators can be found in the multiple regression case, where the covariances among
the regressors will also be relevant, so that it would be difficult to predict a priori whether the
levels or the differences would be more inconsistent. Jacobs (1976) notes that there is one.case
where differencing leads to inconsistent estimators while the levels estimator is consistent. If
there is only one regressor which follows a linear time trend, but it is measured with error, the
levels estimator is consistent but the differences estimator is not.



C.1. Plosser and G.W. Schwert, Money, income and sunspots 655

error, and the need for finding a consistent, efficient estimator for either one
of the regressions.

The second point involves the nature of the measurement error. In the
previous example it is assumed that the measurement error in each period is
independent of the other periods (that is, serially uncorrelated). If u, is
autocorrelated, the effect of differencing on the inconsistency of the differ-
ences regression relative to the levels regression is even more ambiguous. For
example, if the first-order autocorrelation coefficient for the measurement
error is p¥, then (4.7) becomes

.5 1
phm § —ﬁ[u(oﬁ(l—pr)/oi*(l—m)]‘ (48

and depending on the relative magnitudes of p¥ and p,, the inconsistency of
the differences regression may be greater than or less than for the levels
regression.

In fact, one might even hypothesize that the measurement error associated
with x* follows a random walk. For example, suppose that data on the
capital stock in any time period are actually calculated from investment
figures (that is, changes in the capital stock). If there is serially independent
measurement error in the investment series, the measurement error in the
capital stock data would follow a random walk. Under these circumstances,
differencing a linear regression which contains the capital stock as the
independent variable might be preferable in the sense that the resulting
estimator is ‘less inconsistent’ than the levels regression estimator if p¥>p,.

Based on these considerations, we think that arguments which rely on
measurement error as a basis for suggesting that differencing is undesirable
are irrelevant. Such arguments critically depend on the nature of the data
and the form of the measurement error. If the measurement error is
accumulated due to the way the data is compiled, (as in the capital stock
example), differencing might be preferred. However, since the effect of
differencing on measurement error cannot be known in general, efforts
should be centered on obtaining consistent estimators and not on the
question of differencing.

4.2. Long-run vs. short-run

Many economic relationships are expected to hold in the ‘long run’, and
not necessarily in the ‘short run’. This notion can be expressed in the
frequency domain by saying that these economic relationships are low
frequency relationships. It is well known [cf., Anderson (1971) pp. 411-414]
that the effect of differencing is to emphasize high frequencies and filter out
low frequencies. Therefore, differencing might be considered counter-
productive for estimating long-run or low frequency relationships.
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This type of argument has been used more often in recent years as
economists have taken to temporal disaggregation in their search for larger
samples. For example, quarterly or monthly data, rather than annual data,
are often used to estimate econometric models. One disturbing result of this
temporal disaggregation has been that when these economic relationships are
investigated using the changes in the variables of interest it is sometimes
difficult to ascertain any identifiable relationship between the variables.2? On
the other hand, when the same regression is estimated between the levels of
the variables, the ‘relationship’ appears to be significant and parameter
estimates conform to the model builder’s expectations. Unfortunately, these
levels regressions are often associated with highly autocorrelated errors
(which are usually dismissed as being bothersome, but not important enough
to affect the magnitude of relationship that has been estimated). Based on the
examples presented in section 3, it should be clear that such levels re-
gressions require far more scrutiny.

The problem of estimating ‘long-run’ relationships involves the temporal
specification of the econometric model. The temporal specification of an
econometric model refers to the interval over which the data are measured.
Ideally, we would want to use the same time unit for which we believe the
economic model being tested is valid. For example, suppose we are interested
in estimating the relationship between the inflation rate and the rate of
growth of the money supply. It is possible that there is intra-year variation
in prices which is unrelated to the behavior of the money supply (due to
seasonal demand or supply conditions, for example), but that from year to
year (or decade to decade) the rate of inflation is roughly proportional to the
rate of growth of the money supply. In this case, the data observed monthly
would not correspond to the concepts associated with the annual obser-
vations. In fact, this is one of the primary motivations behind the use of
‘seasonally adjusted” data, although we do not advocate the use of such ad
hoc techniques to solve the problem of temporal specification.

Another way to view this problem is in terms of ‘permanent’ and
‘transitory’ components of observed economic variables. For example,
Friedman’s (1957) permanent income hypothesis says that permanent con-
sumption should be related to permanent income, but the transitory com-
ponents of these variables need not be related. If permanent income grows
over time, but transitory income and consumption are stationary random
variables, the estimated relationship between observed consumption and
observed income may be stronger between annual levels of these variables
than between the monthly changes of the variables. In fact, this can be
viewed as an example of the ‘errors-in-variables’ problem discussed above.
However, this problem arises because we do not use direct measures of
permanent income and consumption to estimate the regression relationship.

23Pierce (1977a) provides some examples of this phenomenon.
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Based on the examples given above, we believe that many of the problems
encountered in attempts to estimate economic relationships using more
frequent time series observations arise not from differencing, but from the
incorrect specification of the dynamic properties of the model. Although
many models incorporate dynamic properties (such as stock adjustment
models), they are often ad hoc in their formulation. Consequently, we find it
unfortunate that while there is a large literature on the effects of temporal
aggregation [cf. Zellner and Montmarquette (1971)] where, for example, the
effects of estimating a monthly relationship using quarterly data are in-
vestigated, there is relatively little work investigating the problems that
might be associated with excessive temporal disaggregation.?*

Thus, we think that consideration of the temporal specification of the
model should not be confused with the question of differencing. If data are
measured over intervals which are relevant for the economic theory which
underlies the econometric model, it should not matter whether the levels or
the differences are used to estimate the regression parameters as long as the
disturbances are treated properly. In situations where the levels of the data
yield qualitatively different results than the differences, careful consideration
should be given to the probability of specification errors in both forms of the
model. :

5. Conclusions

Our purpose in this paper has been to discuss the use of the difference
transformation as it relates to econometric model building. We have shown
that the parameters of a correctly specified linear regression model can be
estimated between the levels of the variables, or the changes of the variables,
or the second differences of the variables. We argue that the problem of
nonstationary disturbances (possibly in the levels regression) are far more
serious than the problems caused by excessive differencing (in the second
differences regression, for example). In the underdifferencing case, where the
disturbances are nonstationary, regression parameter estimators do not have
moments and may be inconsistent. On the other hand, in the overdifferencing
case regression parameter estimators are unbiased and consistent, although
they are not as efficient as the estimators for the correctly specified model.

We illustrate our arguments using annual data on income, consumption,
money, and autonomous expenditures from 1897-1958 obtained from
Friedman and Meiselman (1963). We also use annual data on sunspot
activity as a possible explanatory variable. Several different techniques are
used to estimate the relationships between the logarithms of these variables.

24The literature on ‘band-spectral regression’ could be applied in this case where only low
frequency bands are used to estimate the regression function. Engle (1974) discusses the theory
of this technique.
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In all cases, the regression between the levels of the variables has substantial
residual autocorrelation and the exogenous variables are positively autocor-
related, so the estimated standard errors of the regression parameters are
substantially downward biased. Including a time trend variable as an
additional regressor in the levels regression sometimes affects the value of the
regression parameter of interest, but it never eliminates the residual autocor-
relation. A Cochrane-Orcutt procedure is used to jointly estimate the
regression parameter and an autoregressive parameter for the levels re-
gression residuals, and in all of our examples the autoregressive parameter
for the residuals is very close to one (indicating nonstationarity). Thus, the
Cochrane-Orcutt procedure suggests that the first differences regression is
correctly specified in all of our examples. Indeed, the regression equations
between the first differences of the variables yield well behaved residuals in
almost all cases.

In the examples where the change in the log of money is the regressor, the
estimates of the slope coefficient are similar for the levels, time trend,
Cochrane-Orcutt, first differences, second differences regression models.
However, when the change in the logs of autonomous expenditures or
sunspots is used as the regressor, the estimate of the slope coefficient from
the levels regressions is substantially different from the estimates provided by
the other methods. Thus, we have illustrated the potential for obtaining
‘spurious regressions’ between the levels of variables when underdifferencing
is a problem, and we have shown that differencing a correctly specified
model does not change the nature of the results.

In section 4 we discuss the effects of specification errors on the relationship
between levels regressions and differences regressions. We show that, in
general, measurement errors in the regressors cause estimation problems for
both the levels regression and the differences regression. The problem in this
case is to find a consistent, efficient estimator for both the levels and the
differences regressions. Similarly, problems associated with the temporal
specification of an econometric model require careful consideration of how
the data should be measured, and issues related to differencing are
peripheral.

Based on this analysis, it is tempting to suggest that differencing could be
used as a crude test of model specification. If a model is correctly specified in
the levels of the variables, the differences regression should corroborate the
levels regression. On the other hand, if errors-in-variables, omitted variables,
or time aggregation problems exist in the levels regression, the differences
regression may yield substantially different results. Such a finding should lead
to a careful analysis of the model’s specification and a search for corrective
measures, since it is likely that neither the levels nor the differences
regressions yield correct results. Thus, we conclude that a careful analysis of
econometric models estimated from time series data should include many of
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the procedures outlined above. The information provided by simultaneous
analysis of levels and differences regressions, and the properties of the errors
from each, can provide important insights to a careful model builder.
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