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Heteroskedasticity in Stock Returns
G. WILLIAM SCHWERT and PAUL J. SEGUIN*

ABSTRACT

We use predictions of aggregate stock return variances from daily data to estimate time-
varying monthly variances for size-ranked portfolios. We propose and estimate a single
factor model of heteroskedasticity for portfolio returns. This model implies time-varying
betas. Implications of heteroskedasticity and time-varying betas for tests of the capital
asset pricing model (CAPM) are then documented. Accounting for heteroskedasticity
increases the evidence that risk-adjusted returns are related to firm size. We also
estimate a constant correlation model. Portfolio volatilities predicted by this model are
similar to those predicted by more complex multivariate generalized-autoregressive-
conditional-heteroskedasticity (GARCH) procedures.

MANY RESEARCHERS HAVE NOTED that the variance of aggregate stock returns
changes over time. For example, French, Schwert, and Stambaugh (1987) use
daily returns to the Standard & Poor’s (S&P) composite portfolio to estimate
monthly volatility from 1928 to 1984. They estimate that the standard deviation
of aggregate monthly returns was about four times larger in the 1929-1933 period
than in the 1953-1970 period. This paper (i) investigates the relation between
aggregate volatility and the variance of monthly returns to disaggregated port-
folios of stocks and (ii) examines the effect of portfolio heteroskedasticity on
some common empirical tests in finance.

We start with a model which implies that the conditional covariance is a
quadratic function of the conditional market standard deviation,

cov,—1(Rit, Rjt) = aoij + @ijoe—1(Rer) + azijor1(Ret), (1)

where cov,_, is the conditional covariance operator and ¢2_,(R..) is the condi-
tional variance of aggregate stock returns in period ¢ based on information in
period t — 1. We empirically investigate two special cases of (1). Section I
analyzes a single index model of stock return heteroskedasticity,

cove1 (R, Rjt) = ag; + azijo—?—l(Ret)' (2)

If ay; = 0, there is no evidence of changes in portfolio variances and covariances
related to the volatility of the market portfolio R... \If ap;; = 0 and ag; # 0,
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portfolio volatility is proportional to aggregate volatility. If both ao; and a,; are
nonzero, portfolio returns are heteroskedastic, but the relation to aggregate
volatility is nonproportional. Glejser (1969) refers to the situation where the
standard deviation or variance of residuals is not proportional to the regressor
as “mixed” heteroskedasticity.

Aside from its obvious parsimony, the model in (2) is consistent with at least
one model of security returns. Harvey (1989) develops a conditional capital asset
pricing model (CAPM) which can be written as

N
2 C"iRitRjt = a U?—I(Ret) + nje- (3)

i=1

Our model is consistent with this conditional CAPM if each term in the weighted
sum on the left-hand side is linear in o2_; (R.:).

Section I analyzes the single index model of heteroskedasticity in (2) for
monthly returns to size-ranked portfolios from 1927 to 1986. It also analyzes the
implications of (2) for the “market model” regression equation. In particular,
nonproportional heteroskedasticity implies that portfolios have beta coefficients
that vary over time. Section I also shows how tests of the Sharpe (1964)-Lintner
(1965) CAPM are affected by the use of a weighted least squares (WLS) esti-
mation procedure that accounts for heteroskedasticity. It also shows how the use
of time-varying betas implied by the single index model in (2) affects tests of the
CAPM. Relative to tests that assume constant betas over time and that ignore
heteroskedasticity, these new tests find stronger evidence that small firms earn
higher average returns than implied by the CAPM.

Section II estimates a constrained, constant correlation version of the heter-
oskedasticity model (1) where the time-varying covariance matrix =, is

Et = Stlpst, (4)

S. is a diagonal matrix containing the time-varying standard deviations of the
portfolio returns on the diagonal, and p is the time-invariant correlation matrix.
The elements of S, are represented as linear functions of the market standard
deviation,

0t-1(Rit) = Soi + 81:0t-1(Ret). (5)

The advantage of this specification is that a smaller number of time-varying
parameters must be estimated. Also, there are statistical reasons to prefer
estimates of time-varying standard deviations rather than variances. In terms of
(1), the constant correlation model in (4) and (5) implies that ao; = p;jS0iSo;,
a;j = pij(s0is1; + S1Soj), and ag;; = pijs1:S1;, where p; is the unconditional
correlation coefficient between R;; and R;;.

Section III compares the results of the regression models for heteroskedasticity
with univariate and multivariate generalized autoregressive conditional hetero-
skedasticity (GARCH) models for the size-ranked portfolio returns. Section IV
presents brief conclusions and suggestions for future work.
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I. A Single Index Model for Heteroskedasticity
A. Estimates of Aggregate Stock Return Volatility

To model heteroskedasticity in monthly stock returns, we use estimates of
aggregate stock return volatility derived from daily returns to the Standard &
Poor’s composite portfolio from 1928 to 1986. We use returns to a weighted
average of the Dow-Jones Industrial and Transportation portfolios for 1926-
1927. (See Schwert (1990b) for a description of these data.) As argued by Merton
(1980), if stock prices behave like a geometric random walk, the variance of
returns can be measured better by using more frequent observations. Following
French, Schwert, and Stambaugh (1987), we calculate the monthly variance of
the S&P return s? using

N, N—1
2
s, = X ri+2 Iilis1, (6)
&

=1 i

where there are N, daily returns r; in month ¢. The second summation allows for
first-order autocorrelation of portfolio returns due to nonsynchronous trading.
(See Fisher (1966) or Scholes and Williams (1977).)*

Table I contains weighted least squares estimates of a 12th-order autoregres-
sion for s, from 1927-1986,

12

Se = Bo + X BiSe—i + Ue. (7a)

=1

It also contains estimates of a regression of the standard deviation of the excess
monthly return to the CRSP equally weighted portfolio of New York Stock
Exchange (NYSE) stocks s, on 12 lags of s,,

12

Set = o+ X BiSe—i + Ue. (7b)

=1

We use the absolute excess monthly return | R, — Ry |, minus its sample mean
fi., multiplied by the constant (7/2)*? to estimate the standard deviation of the
CRSP equally weighted portfolio s.;. If excess returns have a normal distribution
with a constant mean and time-varying standard deviation, the transformed
variable, (7/2)"?{| R.: — Ri:| — ii.}, has an expected value equal to the standard
deviation of the excess returns. Equation (8) is a regression of the absolute errors

! In (6) we ignore daily average returns in estimating the monthly variance. We have also calculated
versions of s’ that subtract the monthly sample mean and/or ignore the effects of first-order
autocorrelation. None of these corrections has an important effect on the time series behavior of
market volatility. The S&P return does not include dividends. We have calculated variances for
returns to the Center for Research in Security Prices (CRSP) value-weighted portfolio of New York
and American Stock Exchange stocks, including dividends, from 1962 to 1986, and there is no
substantive difference between the CRSP and S&P measures of aggregate volatility. Thus, the
omission of dividends is unlikely to be important in the earlier part of the sample.



Table I

Estimates of Conditional Standard Deviations of Monthly Stock

Market Returns Using 12 Lags of the Standard Deviation of the

Standard & Poor’s Composite Portfolio Based on Daily Returns

in the Month, 1927-1986

Twelve lags of the monthly standard deviation of the S&P composite portfolio based on the daily
returns within the month, s,_;, are used to forecast the current S&P standard deviation (s;) in column
2 or the standard deviation of the CRSP equally weighted portfolio of NYSE stocks s. =
(/2)"?| Ree — Ry — fi.| in column 3. R.. is the monthly return to the CRSP portfolio, Ry, is the yield
on a one-month Treasury security, and /. is the average excess return (R.. — Ry) for the sample
period. These equations are estimated using iterated weighted least squares (WLS), where the absolute
residuals, | i, |, are regressed against the prediction from (7a) or (7b) d, in the Glejser regression (8),
and then (7a) or (7b) is reestimated using WLS, and then (8) is estimated using WLS, and so forth.
This procedure, recommended by Davidian and Carroll (1987), is repeated three times. The sum of
the 12 lag coefficients (8, + - -+ + Bi2) has a t-test for whether the sum equals one in parentheses
below it. R? is the coefficient of determination in terms of the unweighted data. The Box-Pierce
(1970) statistic for 24 lags of the autocorrelations of the unweighted residuals, which should be
distributed as x 2 with 12 degrees of freedom, has its p-value in parentheses below it.

12

&= B0+ X Bist—i + U, (7a)
i=1
12
See = fBo + _21 BiSe—i + Uz, (Tb)
’at’ =70+71&st+ €. ’ 8)
Monthly CRSP
Lag, 8: Daily S&P, s, Equally Weighted, s..
constant .0051 .0038
(3.30) (.87)
1 4620 4944
(9.68) (3.95)
2 .1365 .1822
(2.80) (1.38)
3 —.0070 .0397
(—.16) (.32)
4 .0921 .1362
(2.07) (1.11)
5 —.0081 .0590
(—.20) (.49)
6 .0006 2597
(.01) (2.09)
7 .0790 —-.1161
(1.91) (—1.06)
8 .0680 1141
(1.57) (.96)
9 —.0302 -.1374
(—=.72) (—1.20)
10 .0795 3953
(1.84) (3.09)
11 -.0072 —.0554
(=.17) (—.49)
12 .0263 -.1150
(.72) (—1.25)
Sum of 12 lags .8914 1.2566
(t-test = 1) (—2.57) (2.19)
R? .567 270
Box-Pierce 17.1 31.0
(p-value) (.1441) (.0020)
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from (7a) or (7b) | &, | against the prediction from (7a) or (7b) o,:, a formulation
suggested by Glejser (1969):

[Ge] = vo + y10a + . (8)

As recommended by Davidian and Carroll (1987), we estimate (7a) or (7b) by
least squares, and then estimate (8) by WLS, and then estimate (7a) or (7b) by
WLS, and so forth, for a total of three iterations. Davidian and Carroll (1987)
argue that standard deviation specifications such as these are more robust than
variance specifications based on s? or sZ. Thus, the last 12 monthly values of the
S&P standard deviation based on daily data are used to predict the standard
deviation for month ¢. Schwert (1989) uses many additional financial and mac-
roeconomic variables that are measured on a monthly basis and finds little
evidence that these data help to predict aggregate stock volatility beyond an
autoregression similar to Table I.

The results in Table I support Black’s (1976) intuition that there is a serially
correlated factor causing stock market volatility to change over time. The pattern
of the lag coefficients in Table I is similar for both regressions, although the
coefficients are larger for the monthly equally weighted standard deviations and
the coefficient of determination R? is lower. This is to be expected. The S&P
standard deviation uses about 22 daily returns, rather than one monthly return
for the CRSP equally weighted portfolio. Thus, the S&P standard deviation has
less measurement error. Since the S&P portfolio is weighted more heavily toward
large firms, the risk of this portfolio is likely to be lower.

Compared with monthly data, daily data provide a large advantage in estimat-
ing volatility. Since the daily S&P standard deviation measures the “true”
standard deviation with much less error than the monthly equally weighted
measure, it is preferable to use its lagged values to predict future volatility in
other stock portfolios.

We use the fitted values from (7b), the regression with the equally weighted
market portfolio, as the regressor o., in the remainder of the paper because the
size-ranked portfolios used in the subsequent tests are equally weighted. We use
the simpler notation .. to denote the estimate of the conditional standard
deviation of aggregate stock returns ¢,—;(R.;) throughout the remainder of the
paper.

Since we use the predictions from Table I as regressors in the subsequent
analysis, there is a “generated regressors” problem (see Pagan (1984)). This is
another reason to use the estimates of monthly volatility from daily data in
constructing the predictions o... Better predictions make the generated regressor
problem less serious. This is especially clear in calculating standard errors for
regressions containing generated regressors using the technique of Murphy and
Topel (1985), where the covariance matrix of the parameters from Table I
increases the estimates of the standard errors of the second-step regression
coefficients. In short, if 6., can be estimated more precisely, the correction to the
standard errors in the subsequent tests is reduced, and the power of these tests
is correspondingly increased.
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B. Estimates of the Single Index Model

Table II contains estimates of (2) for five equally weighted size-ranked port-
folios of NYSE common stock returns from 1927 to 1986.2 There are 15 variances
and covariances among the five portfolio returns. To estimate the parameters in
(2), we use the regression:

(Ri - Rjt) = aoij + Qzij G2 + Uijts
t=]_”T, l=1,,5, ]=1,”5, (9)

where R, is the excess return of portfolio 7 in period ¢ (the return minus the yield
on a short-term government security), less the sample mean of the series.
Portfolio 1 contains the smallest 20 percent of firms based on the market value
of equity at the beginning of the year, and portfolio 5 contains the largest 20
percent. The dependent variable is an estimate of the covariance of security ¢
with security j in period ¢. Since the conditional covariance is a function of the
conditional means, cov,—;(R;, R;;) = E._1(R: - R;;) — E.1(R:) - E,.1(R;.),
significant variation in conditional mean returns that is related to the regressor
in (9) would cause this regression to be misspecified. Auxiliary regressions of
excess returns on ¢2, and on 6., not reported here, show that there is no strong
relation between conditional mean excess returns and aggregate conditional
volatility for these portfolios.

Table II also contains estimates of the Glejser (1969) regression for the errors:

A2 A2
uijt = Qojj + 02 Ot + €ijt, t= 1, ey T, (10)

where a,; = 0 implies that there is no heteroskedasticity in (9), and a; > 0
implies that the errors in (9) are heteroskedastic. Where the Glejser regression
(10) shows heteroskedasticity in (9), the least squares standard errors for equa-
tions (9) and (10) are biased downward. Accordingly, we present ¢-statistics using
heteroskedasticity consistent standard errors from Hansen (1982) in parentheses
below the OLS coefficient estimates. Since the regressors in (9) and (10) are
functions of estimates from Table I, we also present standard errors that correct
for the generated regressors problem in brackets, using the technique of Murphy
and Topel (1985). Table III contains WLS estimates of (9), where each observa-
tion is weighted by dividing by the square root of the fitted value from (10). As
in Table I, we iterate three times between (9) and (10) using WLS each time.
The results in Table II show a strong relation between the covariances of
monthly returns and the predicted stock market variance 2. The estimates of
the slope coefficients as;; are large (between 1.0 and 4.0), and they are all reliably
larger than zero. The estimates of the intercepts d;; are all negative, but they are
small relative to their standard errors. (The largest t-statistic is —1.94.) The
slope coefficients are largest for the covariances involving the small firm portfo-
lios, and they are smaller for the larger firm portfolios, reflecting the fact that
the unconditional variances and covariances of small firm portfolios are larger.
(This is also reflected in the residual standard deviations S(i).) Black (1976,

2We also performed all of the tests in this paper on (i) five value-weighted size-ranked portfolios
of NYSE stocks and (ii) 12 equally and 12 value-weighted industry portfolios of NYSE stocks. Since
the results are similar, we do not report them.
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Table 11

Least Squares Estimates of the Single Index Model for Time-Varying
Covariances Among Monthly Returns to Size-Ranked Portfolios,
1927-1986

Equation (9) is estimated using products of excess returns to equally weighted size-ranked portfolios,
where Ry, is the excess return to the smallest firm portfolio and Ry, is the excess return to the portfolio
of the largest firms. The predicted variance of the CRSP equally weighted portfolio return 2 is from
Table I, R? is the coefficient of determination, S (i) is the residual standard deviation, and SR (i) is
the Studentized range of the residuals. ¢-statistics in parentheses use Hansen’s (1982) heteroskedas-
ticity consistent standard errors, with 12 lags of the residuals and the regressors and a damping factor
of 0.7. (See the RATS computer manual for details.) t-statistics in brackets correct the Hansen
standard errors for the fact that the regressor ¢ is a function of the predictions from Table I, using
the technique of Murphy and Topel (1985). The Glejser regressions (10) estimate the relation between
the variance of the residuals from (9) and the predicted market variance 52,.

(R - Ry) = G0y + 02y 6% + Ui, ©)
axzjt = opi; + g &zz + €. (10)
Portfolios
i,J Qoyj Qaij R? S (&) SR(i1) Qo;j gy
1,1 —.0071 3.9843 .182 .0613 21.52 —.0075 2.2204
(—1.94) (4.37) (—2.61) (3.04)
[—1.83] [3.75] [—2.53] [2.81]
1,2 —.0046 2.7657 223 .0375 20.89 —.0028 .8350
(—1.82) (4.44) (—2.68) (3.12)
[—1.71] [3.80] [—2.59] [2.88]
1,3 —.0044 2.5210 251 .0316 19.65 —.0020 5977
(—1.82) (4.22) (—2.711) (3.19)
[—1.73] [3.65] [—2.62] [2.92]
1,4 —.0034 2.0447 247 .0259 21.11 —.0014 .4024
(—1.74) (4.36) (—2.62) (3.15)
[—1.65] [3.74] [—2.54] [2.89]
1,5 —.0032 1.7816 247 .0226 23.10 —.0011 .3255
(—1.82) (4.00) (—2.58) (2.99)
[—1.73] [3.50] [—2.51] [2.77]
2,2 —.0028 2.0302 .266 .0245 18.99 —.0012 .3488
(—1.53) (4.54) (—2.74) (3.31)
[—1.44] [3.85] [—2.65] [3.02]
2,3 —-.0029 1.9155 .286 .0219 16.88 —.0010 2872
(—1.60) (4.32) (—2.75) (3.40)
[—1.51] [3.71] [—2.66] [3.08]
2,4 —.0021 1.5703 278 .0184 17.82 —.0007 .2003
(—1.45) (4.48) (—2.68) (3.40)
[—1.36] [3.81] [—2.60] [3.08]
2,5 —.0020 1.3653 278 .0160 19.57 —.0005 .1555
(—1.53) (4.12) (—2.65) (3.16)
[—1.45] [3.58] [—2.57] [2.90]
3,3 —.0030 1.8689 297 .0208 17.86 —.0009 .2700
(—1.66) (4.17) (—2.711) (3.40)
[—1.57] [3.62] [—2.62] [3.08]
3,4 —.0023 1.5449 .288 .0176 18.75 —.0007 1922
(—1.54) (4.33) (—2.66) (3.43)
[—1.45] [3.72] [—2.58] [3.10]
3,5 —.0021 1.3463 287 .0154 16.68 —.0005 1462
(—1.57) (3.98) (—2.62) (3.17)

[~1.49] [3.49] [—2.54] [2.91]
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Table II—Continued

Portfolios

i,j Qoij Qaij R? S(a) SR (&) Qoij Qi)

4,4 —.0016 1.3010 276  .0153 19.02 —.0005 1422
(—1.34) (4.53) (—2.64) (3.49)
[—1.26] [3.84] [—2.56] [3.15]

4,5 —-.0015 1.1379 278  .0133 16.88 —.0004 .1075
(—-1.37) (4.10) (—2.63) (3.23)
[—1.29] [3.57] [—2.55] [2.95]

5,5 —.0013 1.0204 272 0121 16.93 —.0003 .0886
(—1.32) (3.75) (—2.61) (3.00)
[—1.25] [3.33] [—2.53] [2.77]

Table III

Weighted Least Squares Estimates of the Single Index Model for
Time-Varying Covariances Among Monthly Returns to
Size-Ranked Portfolios, 1927-1986
Equation (9) is estimated using products of excess returns to equally weighted size-ranked portfolios,
where R, is the excess return to the smallest firm portfolio and Ry, is the excess return to the portfolio
of the largest firms. The predicted variance of the CRSP equally weighted portfolio return 62 is from
Table I. R? is the coefficient of determination and S(i) is the residual standard deviation, both in
the original units of the data. SR(i) is the Studentized range of the weighted residuals. These
equations are estimated using iterated weighted least squares (WLS), where the squared residuals,
i}, are regressed against the predicted variance 62 in the Glejser regression (10), and then (9) is
reestimated using WLS, and then (10) is estimated using WLS, and so forth. This procedure,
recommended by Davidian and Carroll (1987), is repeated three times. t-statistics are in parentheses
under the coefficient estimates. ¢t-statistics in brackets correct the WLS standard errors for the fact

that the regressor 62 is a function of the predictions from Table I, using the technique of Murphy
and Topel (1985).

(Ri: - Ri) = aoij + ag;, 6% + Uijes 9)
ﬁ?ja = Qo + az,'j&i + €ijt- (10)
Portfolios

i,j Qo;j Qg R? S(a) SR(i1)

1,1 —.0040 3.2072 177 .0615 15.58
(—5.59) (9.00)
[-3.21] [56.71]

1,2 —.0023 2.2204 215 0377 15.02
(—5.12) (9.88)
[—2.74] [6.91]

1,3 —.0012 1.8638 237 .0319 12.03
(—1.64) (7.74)
[—1.26] [6.35]

1,4 —.0017 1.5488 .235 .0261 13.03
(—2.31) (7.02)
[—1.90] [5.09]

1,5 —.0014 1.2828 234 .0228 21.39
(—2.08) (6.05)
[-1.77] [4.69]

2,2 —.0009 ) 1.6221 .260 .0246 16.96
(—.92) (6.18)

[-.81] [4.73]
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Table III—Continued

Portfolios
i,J Qoij Qij R? S(a) SR (&)
2,3 —.0003 1.4578 .266 .0222 13.20
(—.49) (7.38)
[-.39] [56.21]
2,4 —.0001 1.1856 .262 .0186 14.92
(—.13) (7.68)
[—.09] [6.31]
2,5 —.0026 .7916 232 .0165 17.36
(—3.47) (3.75)
[—3.29] [3.35]
3,3 —.0014 1.3366 .270 .0212 15.20
(—2.13) (7.15)
[—1.78] [6.13]
3,4 —.0003 1.1797 272 .0178 12.09
(—.68) (7.62)
[—.52] [6.29]
3,5 .0000 1.0040 .268 .0156 18.58
(.06) (6.52)
[.05] [4.88]
4,4 .0002 9918 .267 .0154 15.52
(.52) (7.48)
[.38] [6.24]
4,5 —.0004 .8803 .267 0134 12.46
(—1.38) (8.76)
[—.97] [6.62]
5,5 .0002 7836 .260 0122 12.04
(.46) (7.07)
[.37] [6.09]

p. 178) analyzes volatilities for individual firms over the period 1962-1975 ana
concludes the following:

As expected, there seems to be a lot of commonality in volatility changes
across stocks. A 1% market volatility change typically implies a 1% volatility
change for each stock. Well, perhaps the high volatility stocks are somewhat
more sensitive to market volatility changes than the low volatility stocks. In
general, it seems fair to say that when stock volatilities change they all tend
to change in the same direction.

Our results support Black’s conclusion that volatilities tend to move in the same
direction. As for his proposition that the proportional changes in volatilities are
not the same for all firms or portfolios, our estimates @y, and dss5 show that
small (most volatile) firm portfolio variances are four times more sensitive to
market volatility changes than large (least volatile) firm portfolio variances.
The Murphy-Topel ¢-statistics are about 10 percent smaller than the Hansen
t-statistics for the slope estimates dy;. The Studentized range statistics SR (&)
are large (over 16.8), consistent with heteroskedasticity (and non-normality) in
the errors from (9). David, Hartley, and Pearson (1954) propose this statistic as
a test for fat-tailed distributions (relative to a normal population) or for heter-
oskedasticity. Even if excess stock returns R;; were normally distributed, products
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of returns would not be, so it is not surprising that the errors from (9) have large
SR (1) statistics.?

The estimates of the Glejser regression (10) in Table II show that the errors
from (9) are also heteroskedastic. All the estimates of the slopes ay;; are positive
and more than 2.7 standard errors from zero, while the estimates of the intercepts
ag;; are all negative and about 2.5 standard errors from zero.

The WLS estimates in Table III have a pattern similar to the OLS estimates,
and the ¢-statistics are larger. The SR (&) statistics are smaller for the weighted
WLS residuals than for the OLS residuals. The WLS estimates of the slope
coefficient dy; are smaller than the OLS estimates in Table II. Since both OLS
and WLS estimators are unbiased and consistent when the model specification
is correct, these results raise questions about the adequacy of the model specifi-
cation. Nevertheless, the ¢-test for the equality of the OLS and WLS estimates
of as1, the slope coefficient for the small firm portfolio variance, is only 0.86.
Hausman (1978) shows that the variance of the difference between two consistent
estimates, one of which is efficient, is the difference in the variances.

The WLS estimates of the intercept do; in Table III are within two standard
errors of 0, except for the covariances involving the small firm portfolio 1 and
the covariance between the next smallest firm portfolio 2 with the large firm
portfolio 5. This implies that heteroskedasticity is almost proportional, except
for the small firm stocks. Thus, the portfolio variances and covariances move in
proportion to the aggregate market variance. In general, the results in Tables II
and III show that the single factor model in (9) captures much of the heteroske-
dasticity in monthly stock returns.

Figure 1 compares the predicted standard deviation of the equally weighted
market portfolio from Table I, .., with the predicted standard deviation of the
equally weighted portfolio of the size-ranked portfolios from Table III, 5,,. We
computed the variance 2 as the weighted average of all of the elements of the
covariance matrix, d;;;:

PR . 1
Ot = 2 z WiW; o, W= T. (11)
i=1 j=1 5
While there are periods when the plots differ, such as the mid-1930’s and mid-
1960’s, the correspondence between the two predictions is close. The correlation
coefficient between .. and d.; is 0.96. Robert Engle has pointed out that, by
allowing for nonproportional heteroskedasticity in (9), we are not imposing that
the covariance matrix 2, = {0y} is positive definite. Indeed, a few of the values
of 62, are negative during the 1927-1986 sample, so they were set to zero to
calculate the standard deviations.

C. The “Market Model” Regression with Time-Varying Betas
The market model regression equation,

Rit = + IBiRet + €it » t= 1’ Tty T’ (12)

% For example, for the case of variance terms RZ, if R; is normally distributed, the square would
be distributed proportionally to a x 2 variable with 1 degree of freedom.
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Figure 1. Predictions of the CRSP equally weighted return standard deviation from the
regression model in Table I and the equally weighted average of the predictions of
conditional covariances of size-ranked portfolio returns from the single index regression
model in Table III, 1926—-1986. Daily returns to the Standard & Poor’s composite portfolio are
used to estimate the monthly standard deviation for month ¢. A regression model using 12 lags of
this S&P standard deviation is used to predict the standard deviation of the CRSP equally weighted
portfolio return. The solid line represents the fitted values from this regression (in Table I). These
fitted values are then used to predict the variances and covariances of returns to five equally weighted
size-ranked portfolios of New York Stock Exchange-listed stocks. The equally weighted average of
these variances and covariances is an estimate of the variance of the equally weighted portfolio of all
stocks. The square root of the equally weighted average of the fitted values for all of the variances
and covariances is shown as the broken line (from Table III).

where R, is the excess return to a “market” portfolio of assets, is frequently
used in the finance literature. The slope coefficient §; is a measure of the
relative nondiversifiable risk of security i as part of the market portfolio e, 8; =
cov(Ry, R.:)/o2 . The “beta coefficient” §; is a linear combination of the elements
of the covariance matrix of returns to securities in the market portfolio:

N N N
B = 2 wjaij/[ W;Ww; 055 |, (13)
i=1 i=1 j=1

where w; represents the weight of security ¢ in portfolio e. Based on the single
index model in (2), the beta coefficient for security i in period ¢ is

B = Y wilag; + az,-ja:i)
it

= , (14)
>N YN w;w;j (Qo;; + Qo o)
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which specializes to

Bit =3 + a21 (15)
Oet

using the constraint that the weighted average beta coefficient equals 1.* The
notation @, represents ), w;an;;, for m = 0, 2. Thus, if disaggregate heteroske-
dasticity is nonproportional (@, # 0), the beta coefficient for portfolio i will vary
with the level of aggregate volatility. This possibility can be incorporated into
the market model by adding a term (R../é% ), which we refer to as the hetero-
skedastic market model:

th = o + 6;Ret + 6 (Ret/aet + €it t= 13 ] Ty (16)

so that 8, = 8; + 6;/67,, where 6; measures d;.
Table IV contains estimates of the heteroskedastic market model (16), along
with estimates of the Glejser regression:

(7r/2)1/2| é\it| = vo; + V10t + Ui aa7)

Table IV also contains WLS estimates of (16) using the predicted residual
standard deviations from (17) to construct weights. The OLS estimates of (16)
are consistent with evidence from Banz (1981) and other papers, where the beta
estimate §; is monotonically decreasing in firm size, as is the risk-adjusted average
return &;. The positive a; shows that the portfolio of small firm stocks earns
average returns that are larger than the predictions of the Sharpe-Lintner
CAPM.5 The Murphy-Topel t-statistics are not much different from the Hansen
t-statistics in this table, because the generated regressor (R../¢2 ) has relatively
small explanatory power compared with R,;.

The least squares estimate of §; is reliably negative for the small firm portfolio
1, and it is positive for the larger firm portfolios. This pattern implies that the
spread between the risk of small and large stocks is larger during periods of high
aggregate stock market volatility. For example, during the 1929-1933 period
when aggregate stock volatility was highest, the small firm portfolio had a 8,
close to 1.4, and the large firm portfolio had a Bs: of about 0.75. During the mid-
1960’s, when aggregate volatility was lower, the estimated spread between small
and large firm f:’s was close to 0. This is illustrated in Figure 2, which shows
Bi; (smallest firms) and 35: (largest firms) based on the WLS estimates of (16)
from 1927 to 1986.

The SR (¢) statistics in Table IV suggest strong residual heteroskedasticity,
and the estimates of the Glejser regression (17) support this interpretation. The
WLS estimates of (16) yield similar estimates of «; and 8;. The SR(¢) statistics
show that the WLS residuals are much less fat-tailed than the OLS residuals

4 Since the weighted average beta must equal 1.0 for each time ¢, 2 w;dy; = 0, and 2 w;@y; = 1. Thus,
the denominator of (14) must equal o2, by construction.

®See Banz (1981) or Black, Jensen, and Scholes (1972) for a dlSCllSSlOl’l of this test. Roll (1977)
stresses that this procedure can also be interpreted as a test of whether the “market” portfolio (in
this case the NYSE equally weighted portfolio) is mean-variance efficient and the tangency portfolio
relative to the risk-free rate. We will refer to this as a test of the CAPM throughout the paper. See
Chan and Chen (1988) for a discussion of the distinction between conditional and unconditional tests
of the CAPM when the distribution of security returns varies over time.



Table IV

Estimates of the Heteroskedastic Market Model Regression for
Monthly Returns to Size-Ranked Portfolios, 1927-1986

Equation (16) is estimated using the excess returns to equally weighted size-ranked portfolios, where
R, is the excess return to the portfolio of smallest firms, Rs, is the excess return to the portfolio of
the largest firms, and the regressor R, is the excess return to an equally weighted portfolio of NYSE
stocks. The predicted variance of the CRSP equally weighted portfolio return 62 is from Table I.
The t-statistic under o; tests whether the average risk-adjusted return to this portfolio equals 0. The
t-statistic under B; tests whether the relative nondiversifiable risk equals 1. The coefficient 6;
represents the time-varying component of the relative nondiversifiable risk, “beta.” All of these
coefficients are multiplied by 100. The ¢-statistic under §; tests whether relative nondiversifiable risk
varies with market volatility. R? is the coefficient of determination, S(¢) is the residual standard
deviation, and SR (¢) is the Studentized range of the residuals (the weighted residuals for WLS). The
WLS estimates iterate three times between (16) and (17), as recommended by Davidian and Carroll
(1987). For OLS, the t-statistics in parentheses use Hansen’s (1982) heteroskedasticity consistent
standard errors, with 12 lags of the residuals and the regressors and a damping factor of 0.7. (See the
RATS computer manual for details.) ¢-statistics in brackets correct the Hansen or WLS standard
errors for the fact that the regressor (R../62) is a function of the predictions from Table I, using the
technique of Murphy and Topel (1985).

Ry = a; + BiRa + 8:(Ra/5%,) + e, (16)
(w/2)2| & | = voi + v1iGe + Vi 17)
Portfolio
i a; B: 100 - §; R S(é) SR(é) Vo; vy
OLS Estimates
1 .0017 1.4488 -.0366 .919 .0326 11.14 .0046 3453
(1.27) (16.76) (—3.69) (1.73) (8.06)
[1.27] [16.45] [-3.45] [1.52] [6.61]

2 —-.0010 1.0804 .0032 985 .0106 11.05 .0027 .1059
(—1.88) (3.86) (.69) (3.54) (8.25)
[—1.88] [3.86] [.69] [3.13] [6.82]

3 —.0006 9931 .0039 969 .0141 15.84 —.0062 .2498
(—1.60) (-.39) (1.26) (—1.76) (3.90)
[—1.60] [—.39] [1.25] [—1.69] [3.70]

4 -.0013 .8356 .0172 935 .0181 18.26 —.0040 2775
(—2.07) (—4.26) (2.10) (—1.13) (4.38)
[-2.07] [—4.26] [2.05] [—1.08] [4.09]

5 —.0012 7099 .0147 877 .0217 17.41 .0004 2715
(-1.13) (—6.57) (1.56) (.14) (5.37)
[-1.13] [—6.56] [1.54] [.13] [4.87]

WLS Estimates
1 .0015 1.3829 —-.0204 918 .0328 9.51

(1.61) (13.90)  (—3.70)
[1.61] [13.84]  [-3.47]
2 —.0007 1.1000 —-.0018 .985 .0106  7.87
(-2.17) (11.09) (~.88)
[—2.17] [11.08] [—.88]

3 —.0004 1.0470  —.0041 967 .0145 26.17
(—5.20) (2.82)  (-3.92)
[-5.19] [2.82]  [-3.59]

4 —.0008 8827 0056 934 .0183  8.23
(-1.99)  (-9.13) (2.36)
[-1.99]  [-9.13] [2.30]

5 —.0005 7328 0085 876 .0218 893
(=77 (~15.68) (2.34)

[-.771 [-15.66] [2.28]
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Figure 2. Effects of conditional market volatility on relative risk: Weighted least
squares estimates of time-varying beta coefficients for portfolios 1 (small firms) and 5
(large firms) from Table IV, 1927-1986. Returns to equally weighted size-ranked portfolios of
New York Stock Exchange-listed stocks are regressed against the equally weighted market return R,,
and R.. divided by the squared predicted standard deviation of the CRSP equally weighted
excess market return from the WLS estimates of equation (7b) in Table I, 62

R.= o, + BiRe + 6,(Ret/6%) + €2, t=1,---, T, (16)

The estimate of risk for portfolio i in period ¢ is B = B: + 6:/5%. This figure shows the time-varying
beta estimates B,, for the small and larger firm portfolios.

(except portfolio 3). The WLS estimates of §; increase in firm size, and all but
one are more than two standard errors from O.

Table V contains tests of the CAPM («; = 0) and tests for constant risk or
proportional heteroskedasticity (8; = 0) in the heteroskedastic market model (16).
Test statistics are created by estimating constrained and unconstrained systems
of regressions. The likelihood ratio statistic is proportional to the difference in
the logarithms of the determinants of the two residual covariance matrices. We
use the Box (1949) correction to the likelihood ratio test to estimate p-values.®
Two tests are computed for each sample period: (a) a test based on the OLS
estimates of (16) and (b) a test based on the WLS estimates of (16), where the
fitted values from the Glejser regression (17) estimated for the corresponding
sample period are used as weights. In addition, the subperiod tests are summed
to calculate an overall test. We compute two versions of the CAPM test, one

6 We also calculated a number of related test statistics, all of which yielded similar results.
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Table V

Cross-Sectional Tests of the Time-Invariant Capital Asset Pricing

Model for Equally Weighted Size-Ranked Portfolios, 1927-1986
These are asymptotic x? tests across all five equations in Table IV of the hypothesis that the
intercepts in equation (16) «, equal 0 or that all of the coefficients representing the time-varying
component of risk §; equal 0. Equation (16) is estimated using the excess returns to equally weighted
size-ranked portfolios, where R;, is the excess return to the portfolio of smallest firms, R, is the
excess return to the portfolio of the largest firms, and the regressor R.. is the excess return to an
equally weighted portfolio of NYSE stocks. The predicted variance of the CRSP equally weighted
portfolio return 42 is from Table I. The columns labeled “a; = 0] 6; = 0” contain tests of whether the
intercept equals 0 when the time-varying component of risk §, is constrained to equal 0 (i.e., in the
market model regression (12)). This is the conventional Sharpe-Lintner CAPM test. These statistics
should be distributed as a x? variable with 5 degrees of freedom. The tests are based on the
determinants of the residual covariance matrices under the null and alternative hypotheses (i.e.,
likelihood ratio tests). The Box (1949) approximation is used to estimate the p-value for the test
statistics (in parentheses under the test statistics). WLS estimates use the iterated Glejser estimates
from (17) for the subperiod in question. The last row shows the sum of the x? statistics across the
six subperiods along with the p-value from a x 2 distribution with 30 degrees of freedom. We make no
correction for the “generated regressors” problem with the tests in the columns labeled “«; = 0” and
“6:i=0". ’

Ri = a; + BiRe + 6,(Ret/5%,) + e, (16)
(1I'/2)1/2| g,t | = yy + Vu&et + U;. (17)
OLS Glejser WLS
Sample

Period o, =0]6=0 o, =0 6;=0 a;=0]6=0 ;=0 6:;=0

1/27-12/86 8.75 11.16 41.53 28.28 36.27 23.00
(.1197) (.0483) (.0000) (.0000) (.0000) (.0003)

1/27-12/36 8.99 9.48 2.24 17.85 16.60 4.62
(.1096) (.0914) (.8158) (.0031) (.0053) (.4638)

1/37-12/46 14.39 14.03 12.01 18.32 17.27 7.19
(.0133) (.0154) (.0347) (.0026) (.0040) (.2067)

1/47-12/56 6.32 6.23 4.59 8.73 8.61 4.64
(.2767) (.2844) (.4683) (.1203) (.1255) (.4618)

1/57-12/66 6.06 5.89 5.35 6.75 6.29 7.59
(.3008) (.3170) (.3746) (.2400) (.2'788) (.1803)

1/67-12/76 5.98 5.08 30.33 8.10 6.74 36.17
(.3078) (.4063) (.0000) (.1509) (.2405) (.0000)

1/77-12/86 6.36 7.06 5.00 7.18 7.98 5.72
(.2731) (.2164) (.4163) (.2074) (.1573) (.3341)

Sum Across 48.09 47.77 59.51 66.93 63.51 65.94
Subperiods (.0194) (.0209) (.0011) (.0001) (.0003) (.0002)

based on the market model in (12) (labeled «; = 0| 6; = 0) and one based on the
heteroskedastic market model in (16) (labeled «; = 0).

Using the OLS market model test of the CAPM (a; = 0| §; = 0), the p-value is
0.12 for the 1927-1986 sample period. The CAPM test has p-values larger than
0.25 in most of the ten-year subperiods, but the aggregate test across all
six subperiods has a p-value of about 0.02. The OLS heteroskedastic market
model tests of the CAPM («; = 0) yield similar results. The WLS tests, however,
provide stronger evidence against the CAPM since all of these tests are larger
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(the p-values are smaller) than their OLS counterparts. The p-values are less
than 0.0004 in the 1927-1986 sample period and across all of the subperiods.
Based on the subperiod results, the strongest evidence against the CAPM occurs
in the 1927-1936 and 1937-1946 subperiods.

The tests aggregated across the subperiods in the bottom row of Table V allow
different parameter values in (16) in each sample period. In contrast, the test for
the whole 1927-1986 sample period in the first row imposes constant parameters
in (16) for the entire period. If the parameters were truly constant, the full
sample test has greater power, since it is not necessary to estimate extraneous
parameters. On the other hand, if the parameters in (16) vary over time, the sum
of the subperiod tests in the bottom row will have more power to detect departures
from the null hypothesis. Since these tests have higher p-values, it is reasonable
to conclude that departures from the CAPM are more important in some of the
subperiods than in others. Since the tests for each nonoverlapping subperiod are
asymptotically x> with 5 degrees of freedom, the sum of these tests should be
distributed x 2 with 30 degrees of freedom.”

The results of tests for time-varying risk (§; = 0) are similar to the results of
tests of the CAPM. For the overall sample period, and summed across all of the
subperiods, the p-values for this test are less than 0.002. Nevertheless, the
evidence for time-varying betas is concentrated in two subperiods, 1937-1946
and 1967-1976.

Thus, the evidence in Table V for time-varying betas, as represented by the
heteroskedastic market model (16), is about as strong as the evidence against the
CAPM usually referred to as the “small firm effect”. In general, these test
statistics are larger using the Glejser WLS estimates of the model. These tests
are asymptotically more powerful than the OLS tests, so this result should not
be surprising if the null hypothesis is false.

II. The Constant Correlation Single Index Model

As mentioned above, Davidian and Carroll (1987) argue that standard deviation
specifications are generally more robust than variance specifications. The effects
of extreme returns on the model estimates are smaller when they are not squared
as in (9). As shown in (4) and (5), if one is willing to assume that the correlation
matrix is constant over time, the time-varying covariance matrix of returns X,
can be estimated using the time-varying standard deviations of portfolio returns.
The portfolio standard deviations can be estimated using the regression:

(7"/2)1/2|Rit - ﬁz| = Soi + S$1;0e + e, t=1,..., T, (18)

where | R;; — ;| is the absolute value of the excess return to portfolio i in period
¢t minus the sample average of excess returns j;. In (18), s,; represents the part
of the portfolio standard deviation that is constant over time, and s,; represents
the part that is proportional to the aggregate standard deviation ... Based on
the arguments of Davidian and Carroll (1987), estimates of (18) in Table VI

"See Gibbons and Shanken (1987) for a discussion of aggregation of such test statistics across
nonoverlapping sample periods.
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Table VI

Estimates of the Constant Correlation Single Index Model for
Time-Varying Standard Deviations of Monthly Returns to
Size-Ranked Portfolios, 1927-1986

Equation (18) is estimated using estimates of the standard deviations of the excess returns to equally
weighted size-ranked portfolios, (7/2)*/?| R;; — ji;|, where Ry, is the excess return to the portfolio of
smallest firms, Rs, is the excess return to the portfolio of the largest firms, and g; is the average excess
return for portfolio i in the sample period. The predicted standard deviation of the CRSP equally
weighted portfolio return 6., is from Table I. R? is the coefficient of determination, S(&) is the
residual standard deviation, and SR(&) is the Studentized range of the residuals (the weighted
residuals for WLS). The WLS estimates iterate three times between (18) and (19), as recommended
by Davidian and Carroll (1987). For OLS, the t-statistics in parentheses use Hansen’s (1982)
heteroskedasticity consistent standard errors, with 12 lags of the residuals and the regressors and a
damping factor of 0.7. (See the RATS computer manual for details.) ¢-statistics in brackets correct
the Hansen or WLS standard errors for the fact that the regressor .. is the prediction from Table I,
using the technique of Murphy and Topel (1985).

(7|'/2)1/2| R: — Iizl = Soi + $1i0e + Uy, (18)
(/2)2| G| = Yoi + Y1:0et + V. (19)
Portfolio
i Soi Si1i R? S(a) SR(i1) Yoi Yii
OLS Estimates
1 —.0226 1.7020 .246 .1007 13.78 —.0234 1.5418
(—1.65) (7.47) (—1.73) (6.35)
[—1.47] [6.30] [—1.56] [56.57]
2 —.0117 1.3040 .286 .0697 11.26 —.0090 1.0356
(—1.21) (8.03) (—1.19) (7.83)
[—1.06] [6.61] [—1.03] [6.49]
3 -.0115 1.2213 291 .0645 11.28 —.0099 9712
(—1.10) (6.59) (—-1.14) (6.25)
[—.99] [56.74] [—1.03] [6.50]
4 —.0046 1.0187 274 .0561 11.51 —.0050 7946
(—.59) (7.40) (—.72) (6.19)
[—.52] [6.24] [—.65] [5.46]
5 —.0028 8746 .262 .0496 10.67 —.0050 7211
(—.34) (5.76) (—.68) (5.24)
[—.31] [6.17] [—.63] [4.77]
WLS Estimates
1 —.0039 1.3747 237 .1013 7.90
(—.66) (10.68)
[—.48] [7.93]
2 —.0016 1.1298 .280 .0700 6.18
(—.33) (11.67)
[—.24] [8.27]
3 .0010 1.0060 .282 .0649 6.35
(.24) (11.39)
[.17] [8.18]
4 .0026 .8970 .269 .0563 7.06
(.67) (11.35)
[.49] [8.15]
5 .0043 7537 .256 .0498 6.83
(1.26) (10.85)

[.94] [7.96]
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should be affected less by the non-normality of the errors than the estimates of
(9) in Tables II and III. Table VI also contains estimates of the Glejser regression
for the errors:

(7/2)Y?| i | = Yoi + Y1iGee + €2, t=1, .-+, T, (19)

where v,; = 0 implies that there is no heteroskedasticity in (18), and v;; > 0
implies that (18) should be estimated using WLS. Finally, Table VI contains
iterated WLS estimates of (18).

The estimates of (18) and (19) in Table VI are similar to the results in
Table II. The OLS slope estimates §;; are between 1.7 and 0.87, and they are
larger for the smaller firm portfolios. The intercept estimates $y; are close to zero,
and they are positively related to firm size. (The intercepts are most negative for
the smallest firm portfolio.) The coefficients of determination R? are often larger
for the standard deviation specification in (18) than for the variance specification
in (9), although the differences are not large. The SR (i) statistics in Table VI
are large for the OLS residuals, but they are smaller than for the comparable
models in Table II. This indicates less residual heteroskedasticity or non-
normality and suggests that the standard deviation specification in (18) provides
more efficient estimates of coefficients and fitted values (predicted conditional
standard deviations). Finally, the estimates of v,; for the Glejser regression (19)
show there is substantial heteroskedasticity in the errors from (18).

The WLS estimates in Table VI confirm the analysis of the OLS estimates.
The estimates of the slope coefficient §,; are between 1.37 and 0.75, and they are
at least eight standard errors above 0. The intercepts $,; are small and less than
1.5 standard errors from 0. The difference between the WLS ¢-statistics and the
Murphy-Topel adjusted t-statistics is larger than for the previous tables. The
Murphy-Topel statistics are about 30 percent smaller in most cases. The SR (&)
statistics of the WLS residuals are between 7.9 and 6.2, much smaller than either
the OLS results or the results for the variance specification in Table III.

Table VII contains tests across the five equations for (18) of the hypothesis
that all of the intercepts so; equal 0. This test for proportional heteroskedasticity
is an alternative to the time-varying betas in the heteroskedastic market model
(8; = 0).2 The tests are performed for ten-year subperiods and for the overall
1927-1986 sample period, using OLS and WLS techniques. At the bottom of the
table is the sum of the subperiod statistics, which should be distributed as a x 2
variable with 30 degrees of freedom under the null hypothesis. For the overall
period, the WLS x 2 statistic is 5.95, with a p-value of 0.31, which confirms the
small ¢-statistics for §; in Table VI. The largest tests (smallest p-values) in Table
VII occur in the last two subperiods, 1967-1976 and 1977-1986. Remember that
Table V shows significant time-varying risk in the 1967-1976 subperiod.

Consistent with the analysis of Davidian and Carroll (1987), the estimates in
Tables VI and VII, especially the uniformly low Studentized range statistics,

8 We could have performed similar tests on the regression models for variances and covariances in
Tables II and III. The extreme non-normality of the errors, however, would create test statistics that
were not close to the hypothesized x ? distribution under the null hypothesis, so we did not calculate
these tests.
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Table VII

Cross-Sectional Tests for Proportional Heteroskedasticity in the

Constant Correlation Single Index Model for Size-Ranked Portfolios
These are asymptotic x? tests across all five equations in Table VI of the hypothesis that the
intercepts in equation (18) sy equal 0. If this condition is satisfied, the standard deviations of
the size-ranked portfolio excess returns move together in proportion to the standard deviation of the
equally weighted market excess return. The statistics should be distributed as a x * variable with five
degrees of freedom if the intercepts equal 0. The tests are based on the determinants of the residual
covariance matrices under the null and alternative hypotheses (i.e., likelihood ratio tests). The Box
(1949) approximation is used to estimate the p-value for the test statistics (in parentheses under the
test statistics). WLS estimates use the iterated Glejser estimates from the subperiod in question. The
last row shows the sum of the x 2 statistics across the six subperiods along with the p-value from a x?
distribution with 30 degrees of freedom. We make no correction for the “generated regressors”
problem. Equation (18) is estimated using estimates of the standard deviations of the excess returns
to equally weighted size-ranked portfolios, (7/2)2| R — i |, where Ry, is the excess return to the
portfolio of smallest firms, R, is the excess return to the portfolio of the largest firms, and g, is the
average excess return for portfolio i in the sample period. The predicted standard deviation of the
CRSP equally weighted portfolio return ., is from Table I.

(w/2)*| R — fii| = Soi + S1:0ee + Uar, (18)
(71'/2)1/2| ﬁit| = Yo + Y1 0et + . (19)
Sample Period OLS Glejser WLS
1/27-12/86 25.52 5.95
(.0001) (.3114)
1/27-12/36 1.59 8.88
(.9030) (.1139)
1/37-12/46 14.81 7.24
(.0112) (.2033)
1/47-12/56 7.43 5.73
(.1907) (.3333)
1/57-12/66 3.06 2.87
(.6915) (.7197)
1/67-12/76 14.18 16.84
(.0145) (.0048)
1/77-12/86 13.73 26.91
(.0174) (.0001)
Sum Across 54.79 68.47
Subperiods (.0038) (.0001)

suggest that the standard deviation specification in (18) may be preferred to the
variance specification in (9). Perhaps the main reason for this difference is that
the square root transformation in (18) produces errors that are less positively
skewed and less affected by large observations.

III. Comparison with Multivariate GARCH Models

Bollerslev, Engle, and Wooldridge (1988), Engle (1988), Baillie and Bollerslev
(1987), Bollerslev (1987), and Ng (1988), among others, have proposed using
multivariate generalized autoregressive conditional heteroskedasticity (GARCH)
models to represent a set of time series whose variances and covariances change
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over time. In particular, the time-varying covariance matrix can be expressed as
a multivariate GARCH (p, q) process:

p
Et = C + 2 Aiet—iet,—i +
=1

i=

q
szt—jy (20)
=1

J

where C represents the time-invariant component of the covariance matrix, and
the coefficient matrices A; and B; determine the persistence of the conditional
heteroskedasticity. Engle (1988) discusses a number of alternative parameteri-
zations of the multivariate GARCH model that ensure that the covariance matrix
2, is positive definite. Given a model for the conditional mean return (which we
treat as a constant for a given security) and the assumption that the conditional
distribution of returns is multivariate normal, a nonlinear optimization algorithm
can be used to construct maximum likelihood estimates of the parameters and
the time-varying covariance matrices.

Table VIII contains estimates of univariate GARCH (1, 1) models for each of
the five size-ranked portfolios and for the equally weighted market portfolio:

Ri= a; + €, € ~ N(O, af), (21)
U?t =¢ + ailf?t—l + bila?t—ly I’ = 17 Tty 5’ t= 17 ) T (22)

These GARCH models were chosen because they seem to approximate the time-
varying behavior of the conditional variances. For example, French, Schwert,

Table VIII

Estimates of the Univariate GARCH Models for Monthly Stock

Returns to Size-Ranked Portfolios, 1927-1986
These Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, which are
special cases of equation (20), are estimated using the excess returns to equally weighted size-ranked
portfolios, where R, is the excess return to the portfolio of smallest firms and R;, is the excess return
to the portfolio of the largest firms. The last row shows estimates for R,,, the excess return to the
CRSP equally weighted portfolio of NYSE stocks. The asymptotic ¢-statistics are in parentheses
under the coefficient estimates. The last column contains the value of the log-likelihood function for
these parameter estimates, In L.

Ri=a, + &, &~ N(0,o}), (21)
oi=c¢ + ane_, + byory, i=1,---,5 t=1,..., T (22)
Portfolio
i o 100 - C; a;1 bil InL
1 0156 .0080 .1808 .8358 806.15
(7.89) (2.41) (8.14) (50.27)
2 .0134 .0118 1522 .8352 947.26
(6.96) (3.00) (5.91) (33.50)
3 .0132 .0106 1517 .8330 1011.91
(7.14) (3.23) (5.50) (32.66)
4 .0122 .0102 .1550 .8262 1079.73
(6.89) (3.41) (5.73) (34.11)
5 .0115 .0079 .1538 8271 '1169.67
(7.12) (3.08) (6.25) (38.65)
R, .0132 .0099 .1619 .8270 1022.24

(7.23) (3.00) (5.91) (32.57)
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and Stambaugh (1987) find that the GARCH (1, 1) model works well for monthly
stock returns. The parameter estimates show that the size-ranked portfolios have
very similar properties. The means are a monotonically declining function of
firm size, but the GARCH parameters are virtually identical for the different
portfolios. Also, there seems to be persistence in the variances of the stock
returns since the sum (a;; + b;1) is close to unity. Engle (1988) refers to this as
an integrated GARCH process. These estimates suggest that the single index
model of heteroskedasticity in Sections I and II provides a good description of
the data. The conditional volatilities from (22) are highly correlated across
portfolios. The lowest correlation among the five portfolios is 0.91, and all
adjacent portfolio volatilities, such as ¢;; and oy, have correlations of at
least 0.98.

Table IX contains estimates of (20) for the set of five size-ranked portfolios,
where the model is constrained using the assumption that the correlation matrix
of returns is constant over time:

Oijt = Pij Tt Tjt, i=13 ""5; J=1’ ) i; t=1a M) T' (23)

Even though the GARCH parameters are similar for the different portfolios, the
equality constraint can be rejected at conventional significance levels. (The
likelihood ratio statistic is 36.06, which should be distributed as x * with 8 degrees
of freedom in large samples.)

We tried several specifications of the multivariate GARCH model (20) and

Table IX

Estimates of the Multivariate Constant Correlation GARCH Model for
Monthly Stock Returns to Size-Ranked Portfolios, 1927-1986

This multivariate GARCH model, which is a special case of equation (20), is estimated using the
excess returns to equally weighted size-ranked portfolios, where Ry, is the excess return to the portfolio
of smallest firms and R;, is the excess return to the portfolio of the largest firms. The conditional
covariances are assumed to be proportional to the product of the conditional standard deviations as
in (23), where p;; is the unconditional correlation of the errors from (21). The asymptotic ¢-statistics
are in parentheses under the coefficient estimates. The last column contains the value of the log-
likelihood function for these parameter estimates, In L.

Ri= i+ e, &~ N(0, o}), (21)
oi=c + anei, + bk, i=1,-.,5 t=1,..-, T, (22)
Oijt = PijOitOje - (23)
Portfolio
i o; 100 - C; Qi1 bil InL
1 .0138 .0117 .1026 .8907 12033.7
(9.60) (7.33) (16.56) (178.00)
2 .0109 0154 .0860 .8888
(12.29) (13.36) (18.72) (186.64)
3 .0108 .0186 .0914 8721
(12.62) (16.24) (16.15) (141.03)
4 .0098 .0190 .0906 .8648
(11.26) (13.48) (14.29) (112.16)
5 .0091 .0161 .0876 .8639

(10.82) (9.38) (13.51) (92.38)




1150 The Journal of Finance

could find none that obviously dominated the constant correlation specification
in Table IX. What is of most interest from the perspective of this paper is to
compare the time series behavior of the conditional variances from the GARCH
models and from the single index regression models in Sections I and II.

Figure 3 plots the conditional standard deviation of the equally weighted
market portfolio return &, from the WLS regression in Table I and from the
univariate GARCH model in Table VIII. It is clear from this plot that the two
methods of calculating the conditional standard deviation of market returns yield
similar results. (The correlation between them is 0.99.)

Figure 4 plots the conditional standard deviation of the equally weighted
market portfolio return from the univariate and multivariate GARCH models in
Tables VIII and IX. To calculate the conditional variance of the equally weighted
market return from the multivariate GARCH model, we compute the weighted
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Figure 3. Predictions of the CRSP equally weighted return standard deviation from the
regression model in Table I and from the univariate GARCH model in Table VIII, 1926—
1986. Daily returns to the Standard & Poor’s composite portfolio are used to estimate the monthly
standard deviation for month ¢. A regression model using 12 lags of this S&P standard deviation is
used to predict the standard deviation of the CRSP equally weighted portfolio return. The solid line
represents the fitted values from this regression (in Table I). A univariate generalized autoregressive
conditional heteroskedasticity GARCH (1, 1) model is also estimated for the CRSP equally weighted
portfolio return,

Ri=a; + €ty €ir ™~ N(O, 0’?:): (21)
oi=c + anei_, + byod,, i=1,.--,5 t=1,.--, T. (22)

The predicted standard deviations from this model are shown as the broken line (from Table VIII).
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Figure 4. Predictions of the CRSP equally weighted return standard deviation from the
univariate GARCH model in Table VIII and the equally weighted average of the predictions
of conditional covariances of size-ranked portfolio returns from the multivariate GARCH
model in Table IX, 1926-1986. A univariate generalized autoregressive conditional heteroske-
dasticity GARCH (1, 1) model is estimated for the CRSP equally weighted portfolio return,

Ri=a;+ e, €&~ N(O, 0?:), (21)
Ul?t =+ ailel?t—l + bil“?ﬁ—ly i= 1: ] 5; t= 1; ] T. (22)

The predicted standard deviations from this model are shown as the solid line (from Table VIII). A
multivariate GARCH (1, 1) model is estimated for the five size-ranked portfolio returns assuming
constant correlation p;;,

Oijt = Pij Ou Tjty l=1y Tty 5; j=1y "'yi; t=1y"'7 T. (23)

Then, an equally weighted average of the covariances o;;, is used to estimate the equally weighted
market variance. The square root of this average is shown as the broken line.

average of all of the elements of the covariance matrix, ;j;, in (11). As with the
plots from the single index model in Figure 1, the plots in Figure 4 show that
there is much comovement in the volatilities of the size-ranked portfolio returns.

Thus, the evidence from the multivariate GARCH model supports the conclu-
sions reached from the regression models in Sections I and II. There is a common
source of time-varying volatility across disaggregate stock portfolios.

Since the first draft of this paper was written, we have seen a paper by Engle,
Ng, and Rothschild (1989) that also examines the commonality of volatility shifts
for size-ranked portfolios. They use a Factor-ARCH model and conclude that
one dynamic factor (an aggregate portfolio with larger weights for larger firms)
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is adequate for modeling conditional variances. Thus, their results reinforce our
conclusion that single index models, like those presented here, are useful for
modeling volatilities of disaggregate portfolios. The recent paper by Merville and
Pieptea (1989) documents common movements in the implied standard deviations
derived from options prices for several NYSE stocks.

IV. Conclusions

This paper shows that heteroskedasticity in stock returns is a pervasive phenom-
enon. Using five portfolios of stocks sorted by firm size, we show that there is a
common “market” factor in the heteroskedasticity of monthly stock returns. We
use daily returns to the Standard & Poor’s composite portfolio to measure
aggregate monthly stock volatility. The volatility of monthly returns to the size
portfolios is highly related to autoregressive predictions of this market volatility
factor.

Much prior research views heteroskedasticity as a purely statistical problem,
as a potentially confounding factor in estimating the market model. Martin and
Klemkosky (1975), Bey and Pinches (1980), and Barone-Adesi and Talwar (1983)
conclude that heteroskedasticity is not a problem in studies of security returns.
The first two studies examine the market model (12), while Barone-Adesi
and Talwar (1983) use the “quadratic market model” proposed by Kraus and
Litzenberger (1976), which adds the squared market return to (12). They then
regress the absolute errors from this model on the market return (not its square
or absolute value). Because the market return is a poor estimate of market
volatility, it is not surprising that these authors reached opposite conclusions to
a similar question. It is also not surprising that MacDonald and Morris (1983)
and Giaccotto and Ali (1982) find stronger evidence against homoskedasticity
when they relate error variances to squared market returns, which are better
estimates of market volatility.

To a first approximation, disaggregate heteroskedasticity is proportional to the
market factor. There is weak evidence that the heteroskedasticity of returns to
the small firm portfolio is nonproportional, which implies that relative risk (beta)
changes over time for this portfolio.

We show how tests of the capital asset pricing model are affected by a simple
weighted least squares heteroskedasticity correction. In general, the evidence
that small firms’ stocks earn higher returns than predicted by the CAPM is
stronger when the WLS tests are used.

Future research will provide more detailed characterizations of the heteroske-
dasticity of stock returns. Because there are predictable movements in stock
volatility, however, many types of tests should take heteroskedasticity into
account. For example, studies of the distributional properties of stock returns
should incorporate predictable heteroskedasticity. As shown in this paper, failure
to account for predictable heteroskedasticity can lead to the misleading conclu-
sion that the conditional distribution of security returns is much more fat-tailed
than a normal distribution. Studies of time-varying expected returns or “mean
reversion” in stock returns (e.g., Keim and Stambaugh (1986), French, Schwert,
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and Stambaugh (1987), Fama and French (1988), or Poterba and Summers
(1988)) should correct for the effects of predictable heteroskedasticity. In fact, in
the Poterba and Summers (1988) paper the evidence for long-term negative
autocorrelation in stock returns is much weaker when heteroskedasticity is taken
into account.

Studies of contingent claims pricing with time-varying volatility (e.g., Johnson
and Shanno (1987) and Wiggins (1987)) and studies of whether stock volatility
changes in association with a particular type of event (e.g., Ohlson and Penman
(1985), Skinner (1989), or Tracy (1987)) could take advantage of the simple
single index structure proposed here. This structure allows researchers to estimate
the conditional variances and covariances of individual stocks or portfolios given
conditional market variances. Thus, the large body of research on the prediction
of market-wide volatility (including French, Schwert, and Stambaugh (1987),
Nelson (1990), Pagan and Schwert (1990), and Schwert (1989, 1990a)) can be
brought to bear on the prediction of firm and portfolio volatility.
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