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The effect of differencing all of the variables in a properly specified regression equation is
examined. Excessive use of the difference transformation induces a non-invertible moving
average (MA) process in the disturbances of the transformed regression. Monte Carlo tech-
niques are used to examine the effects of overdifferencing on the efficiency of regression para-
meter estimates, inferences based on these estimates, and tests for overdifferencing based on
the estimator of the MA parameter for the disturbances of the differences regression. Overall,
the problem of overdifferencing is not serious if careful attention is paid to the properties of the
disturbances of regression equations.

1. Introduction

Recently Granger and Newbold (1974) have illustrated the potential for
observing spurious correlations between time series variableswhich havecommon
deterministic or stochastic trends. Yule (1926) made this point a half century
ago, but it has not been fully incorporated into applied econometric work. One
suggestion for avoiding this difficulty is to take the differences of the variables
until each has a constant unconditional mean over the sample period, and then
estimate the correlation or regression relationship between the transformed
variables. This is proposed as a strategy for data analysis by Box and Jenkins
(1970), Granger and Newbold (1974), and others. While it is true that differenc-
ing all of the variables in a regression function does not generally affect the
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Sims, William Wecker, and Arnold Zellner, although we are responsible for remaining errors.
Plosser’s participation in this research was partially supported by National Science Foundation
Grant SOC 7305547 and the H.G.B. Alexander Foundation at the University of Chicago. An
earlier version of this paper was presented before the Econometric Society in September 1976
at Atlantic City, New Jersey.
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values of the regression coefficients,! the properties of the disturbance term for
the regression equation are affected by the transformation. In particular, it is
possible to induce a non-invertible moving average process in the disturbances
for the regression equation between the transformed variables by differencing
the regressand and the regressors prior to estimating the regression parameters.
In this paper we examine the problems associated with estimating such a non-
invertible moving average process, and the implications of these problems for
the model-building strategy of Box, Jenkins, Granger, and Newbold.

A time series {Z,} is said to have a representation as a first-order moving
average process [MA(1)] if it can be written as

Z, = 0a,—0,d,-,
= (1-0,L)a,, (1.1)

where {d,} is a sequence of independent identically distributed (i.i.d.) random
variables with mean zero and constant variance o2, 0, is the constant moving
average parameter, and L is the lag operator: L*%, = %,_,. If [0,] <1 in
eq. (1.1), the process is said to be invertible; that is, Z, has an autoregressive
representation,

2= 3 I ta,. (1.2)

Since the autocorrelation structure of the MA(1) process is unchanged if 8,
is replaced by 1/0, in eq. (1.1), the admissible range of 6, is usually restricted
to the region [0;] = 1 in order to identify estimates of the MA parameter.
Although a number of authors have studied the properties of different estimators
of 8, for invertible MA processes, little attention has been directed towards
properties of estimators of 8 in the case where |6,| = 1.

In this paper we analyze the strictly non-invertible moving average process
which occurs when |6,]| = 1, so neither 6, nor 1/0; yield a convergent auto-
regressive representation for {Z,}. In section 2 we show that this case could
occur frequently in the analysis of autoregressive-integrated-moving average
(ARIMA) models or time series regression models as a result of excessive use
of the difference transformation: 4%, = %,—X,_,. In section 3 previous work
on the large and small sample properties of estimators of invertible MA para-
meters is reviewed. We emphasize the considerations which are likely to be
problematic in the strictly noninvertible case. In section 4 we present Monte

This is true if every variable in the regression equation is differenced the same number of
times, and the exogenous variables are not polynomials in time. When we say that all variables
are differenced until each has a constant unconditional mean over the same period, we assume
that all variables are differenced the same number of times.
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Carlo experiments for two plausible situations where a strictly non-invertible
moving average process might occur as a result of excessive differencing. First,
we consider the case

%, = a+pt+d,, (1.3)

so that {Z,} deviates randomly around a linear trend. If Z, is differenced in order
to create a transformed series with a constant unconditional mean and variance,
the changes in 2, follow a non-invertible MA(1) process,

4z, = p+ad,—6,d,_,, 0, = 1. 1.4)

Second, we consider the case

V. = a+px,+a,, (1.5a)

and

%, = %,_, +il,, (1.5b)

where {d,} and {#,} are independent sequences of i.i.d. random variables, so
X, follows a random walk and J, is linearly related to %, with a stationary
disturbance. If both {j,} and {%,} are differenced, so each has a constant
unconditional mean and variance, the regression equation between the differenced
variables is

A5, = o« +pA%,+(1~0,L)d,, 0, = 1. (1.6)

The disturbance in eq. (1.6) follows a non-invertible MA(1) process. The
Monte Carlo experiments concentrate on three issues: (a) the sampling distribu-
tion of an estimator of 0, ; (b) the properties of estimated standard errors of
0, and the test statistics associated with the hypothesis 6, = 1; and (c) the
sampling distribution of the estimators of the regression parameter  when
0, = 1in eqs. (1.4) or (1.6).

Finally, in the last section we summarize the findings of the Monte Carlo
experiments and relate them to the problem facing the data analyst of whether
or not to use the difference transformation. We conclude that overdifferencing
does not create serious problems for estimating linear regression models,
although estimates of the moving average parameter are likely to be biased
toward zero if |8, | = 1. Thus, the strategy of Box and Jenkins (1970) or Granger
and Newbold (1974) should not lead to serious errors in the event that differen-
cing is not necessary to induce stationarity in the disturbance for the regression
relationship. Our sampling experiments should provide applied econometricians
with a basis for deciding whether overdifferencing has occurred.
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2, Differencing and non-invertibility

2.1. Univariate time series models

The difference transformation, 4%, = %,—%,_,, has been advocated as a
technique for eliminating deterministic or stochastic trends from time series
data so that the transformed variable has a constant unconditional mean.?
Tintner’s (1940, 1955, 1962) ‘variate difference’ method uses the difference
transformation to remove a polynomial time trend from the time series,

Z, = ft)+a, (2.12)
4%, = (1-L)%, = a+d,, (2.1b)

by analyzing the sample variance of successive differences of the time series.
In principle f(¢#) could be a general deterministic function of time which might
be approximated by a dth order polynomial equation.?

Other analysts have advocated the use of the difference transformation to
eliminate stochastic trends in time series data. Wold (1938), Yaglom (1955),
Whittle (1963, pp. 92-96), Quenouille (1968, pp. 50-57), and Box and Jenkins
(1970, pp. 85-125), among others, suggest the use of the difference transformation
to eliminate unitary roots in the autoregressive polynomial for an autoregressive-
integrated-moving average (ARIMA) process. For example, suppose a time
series has a representation as an ARIMA process,

¢ (D)2, = 0,L)a,, 22

where ¢,(L) is the pth order AR polynomial in the lag operator and 0,(L) is
the gth order MA polynomial in the lag operator, or

Z, = O D)/e,L)a,, 2.3)

where 4, is a serially independent random variable with a stationary distribution
over time. The dth differences of Z, can be represented as

(1-L)z, = (L =L)'0,(L)/$,(L))d,. 2.4)

2It may be necessary to use a logarithmic or power transformation [cf. Box and Cox (1964)],
or some other transformation prior to differencing in order to induce a constant unconditional
variance for the transformed variable. We say a random variable is stationary if it has a constant
unconditional mean and variance, although we are primarily concerned with mean nonstation-
arity in this paper.

3Kendall and Stuart (1968, pp. 384-392) discuss the variate difference method.
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Now if there are d unitary roots in the AR polynomial,

jd r—d

¢, =[] A-¥;L) = 1-L) [] 1-¥,L),

i=1 j=1

the difference factor would cancel from the numerator and the denominator of
the right-hand side of (2.4). Thus, the dth differences would have a representa-
tion as an ARMA process,

(1-L)z, = (0,L)/$)-4LD)d, 2.5)

where the AR polynomial, ¢, _ ,(L), is of order (p—d) and presumably all of the
remaining p—d roots lie outside the unit circle.

A simple example of this type of situation where differencing eliminates
linear homogeneous non-stationarity is the random walk model,

5, =3,_,+d, (2.6a)

aj1-L) =Y a,_,. (2.6b)
<o

In this case the first difference of Z, is just the stationary random variasle &, ,
but the level of the process Z, does not have a finite unconditional mean or
variance. The random walk model exhibits ‘stochastic trends’ due to the
accumulation of random shocks 4,, even though 2, does not contain a deter-
ministic function of time.

Pierce (1975) discusses the similarity of the sample autocorrelation functions
for realizations from processes which have deterministic trends like (2.1) with
those from processes which have unitary roots in the autoregressive polynomial
like (2.4). He considers methods for simultaneously identifying deterministic
time trends and ARIMA models for the errors associated with the time trend
model.

If a univariate time series is differenced in order to remove a deterministic
trend as in (2.1b), the resulting disturbances d, will have a moving average
polynomial with a unitary root. Given the similarity of the sample realizations
from models with deterministic and stochastic trends, data analysts could
frequently difference variables to induce stationarity while inadvertently
inducing a non-invertible MA process for the disturbances of the transformed
series.

A similar problem can occur if a time series variable exhibits pronounced
seasonal behavior due to different means for the periods within the year.
Seasonal differencing the series creates a transformed series with a constant
mean, but it also induces a non-invertible moving average process at the
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seasonal lag. For example, suppose z, ; represents a realization from a stochastic
process in the month s of year ¢ and the process is defined as

£,,=E@)+EE)+E, s=1,..,12, t=1,...,T, Q2.7

where E(Z,) represents the deviation of the mean in month s from the overall
mean E(Z), and &, is an i.i.d. random variable whose distribution does not
depend on ¢ or s. The seasonal difference of {Z, ,} is

(1 _LIZ)Et,s = Zt,s_zt—l s = ét,s—gt—l,s, (2-8)

’

which is a strictly non-invertible first-order seasonal MA process.

2.2. Regression models

It is well known that serially correlated disturbances can seriously affect the
distributional properties of ¢ or F statistics which are computed under the
erroneous assumption that the disturbances are serially independent.* In
particular, if the regression disturbance follows an ARMA process with one or
more unitary roots in the AR polynomial it would be necessary to difference
all of the variables in the regression equation one or more times in order to
climinate the non-stationarity of the disturbances. In general, there is no
theoretical reason to presume that the regression disturbance would be stationary
for the levels of the variables, so a data analyst might consider estimating the
regression function between the differences as well as the levels of the variables.

The solution tentatively suggested by Granger and Newbold (1974, p. 118),
following the lead of Box and Jenkins (1970, p. 378), is to difference all of the
variables in the regression model until each has a constant unconditional mean
before trying to estimate the coefficients of the model. However, this strategy
could lead to a non-invertible MA process in the regression disturbances for the
transformed variables if the non-stationary behavior in the regressand j, is a
result of the relationship with a non-stationary regressor X,. An example of this
case is given in egs. (1.5) and (1.6) where X, follows a random walk, so j, has a
representation as an IMA(L, 1) process [the first differences of 7, follow an
invertible MA(1) process],®

Ay, = pAX,+Aa, (2.92)

= Bil,+d,—d,_,. (2.9b)

4Vinod (1976) illustrates the effects of serially correlated disturbances on the critical values
for ¢ and F tests by computing upper and lower bounds for the critical values of the test
statistics.

5Box and Jenkins (1970, pp. 121-125) illustrate a case similar to this one.
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Thus, both 7, and %, are non-stationary processes and would be incorrectly
differenced prior to estimating the regression parameters following the Box-
Jenkins strategy. The subsequent Monte Carlo experiments examine the losses
which are associated with estimating the regression parameters from the
differenced data [as in eq. (1.6)], rather than the correctly specified regression
between the levels of the variables [eq. (1.4)].

Thus, contrary to the assertion of Whittle (1963, p. 43) that a strictly non-
invertible MA process would only rarely occur in practical situations ‘because
the fact that a variable can only be observed with a limited accuracy...’, the
use of the difference transformation can lead to strictly non-invertible moving
average processes in several plausible cases. In the subsequent sections, we
analyze the problem of estimating the MA parameter in this case and we
examine the implications of ‘overdifferencing’ on the estimators of time trend
or regression parameters.

3. Estimation of MA parameters

3.1. The likelihood function for the MA(I) process

Suppose a time series {Z,} has a representation as an MA(1) process,
Z, =d,—0d,_, =1-0,L)a,, t=1,...,T, 3.1

where {d,} is a sequence of i.i.d. Normal random variables with mean zero and
constant variance, o>. Through recursive calculation equation (3.1) can be
expressed in terms of the past values of the series,

%= =02, —0%,_,—...— 0713, +d,— 04d,, (3.2)

where d, is the unobservable disturbance which occurred prior to observing the
sample. Eq. (3.2) highlights the importance of invertibility for estimating the
MA parameter 0, since the last term 6%d, has diminishing effect on Z, as ¢
gets large as long as [0, | < 1. Regardless of invertibility, the likelihood function
for the MA(1) process in eq. (3.1) is

. 1
L(0y,02]z) = o})"T? |K'K| " *exp {—50—2 z'MTz}, (3.3)
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where
— .1..1
(1+0% -6, 0- - -0
-0, (+09H -0,
MT = 0 —01 * N 0 5 (3.43.)
-0,
. 0 -0 -0, (1407 |
and
T .
|K'K| = 2 0%, (3.4b)
j=0

Note that the sum of squared residuals computed recursively as a function of
0, is the expression in the exponent,

T
S0, = ,;o a(0,)* = 7Myz. (3.5)

Shaman (1969) derives an expression for the typical element m;; of M; which
does not require invertibility,

(1403 +... +020" D11 +03 + ... + 03T~}
{1+02+ ... +62T) ’

my; = 057"

If 18,] < 1, m;; can be written as

(1-01H(A—077 717 7)

my = 0" =0Ty for i<, 3.7
and the determinant (3.4b) becomes
1 —pAT+D
|K'K| = a—6; ) (3.8)

1-o0p) -

Thus, the likelihood function is a very complicated function of the MA para-
meter @, , especially if |8,| = 1.
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Although the only restriction which must be imposed on eq. (3.1) to make
the process stationary is that 0, be finite, the autocorrelation function for the
MAC(1) process,

_01
1+67°

=0, k>1, 3.9

Pk k=1,

illustrates a fundamental identification problem for MA processes [cf. Quenouille
(1968, p. 79)]. If 6f is a solution to (3.9), so is 1/0F, which means that for every
non-invertible process there is an observationally equivalent invertible process,
except for the case where [0;]| = 1. This consideration has led Box—Jenkins
(1970, A7.6, p. 284) and Osborn (1976) to suggest that the likelihood function
should be maximized over the invertibility region of the parametcr space in
order to identify estimators of MA parameters.® Such a restriction of the
admissible parameter space has the additional advantage of avoiding com-
putational problems involved in estimating the initial condition d,, and it
reduces the importance of the initial condition @, as seen in eq. (3.2). However,
the important case of |6;| = 1 is ignored by restricting attention to invertible
MA processes, so we suggest restricting the admissible parameter space to
|0,{ = 1 for MA(1) processes.

There are several methods for estimating 0, based on approximations to
the likelihood function (3.3) and most of them differ because of their treatment
of the initial condition &,. Box and Jenkins (1970, pp. 215-220) suggest a
method of ‘backcasting’ the presample value &, based on the stochastic structure
of the sample. They argue that for large samples and an invertible MA process,
maximization of the likelihood function (3.3) is essentially equivalent to
minimizing the sum of squares function S(6,), because the determinant (3.4b)
approaches a constant for large samples.

Unfortunately, these arguments are not true when |0, | = 1. First, the deter-
minant (3.4b) does not approach a constant as the sample size gets larger, so
it can’t be ignored in maximizing (3.3). Second, the backcasting technique can
no longer effectively be used to estimate d,, since the effect of the assumption
about initial conditions (at the end of the sample) will never be dissipated when
the backward process is analyzed [cf. Osborn (1976, p. 82)].

Alternatively, a, could be added to the parameter set and estimated jointly
with the moving average parameter [cf. Osborn (1976, pp. 76-78)]. While this
approach does not require invertibility, rounding errors may become important
if |0, ] is larger than unity.

¢In higher crder moving average processes an equivalent assumption is that all of the roots
of the moving average polynomial, 8(L), lie outside the unit circle.
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Finally, the approach which is used most frequently in practice is to set the
initial condition equal to its marginal expectation of zero, a, = 0. This ‘con-
ditional’ maximum likelihood estimator for 8, merely requires finding the value
of 8, which minimizes the sum-of-squares function, S(8,). All of the preceding
estimators are easily operationalized using standard nonlinear least squares
procedures [cf. Chambers (1973)].

A full maximum likelihood estimator of 6, would involve evaluating both
the sum-of-squares function S(0,) and the determinant in (3.4b). Osborn (1976)
and Ali (1976) discuss some of the difficulties involved in such a procedure
beyond those which occur with the estimators which only minimize some form
of the sum-of-squares function.

3.2. Distributional properties of M A parameter estimators

Since most of the estimators of 6, discussed above differ from a full maximum
likelihood estimator because of their treatment of the initial condition, and since
the initial condition has diminishing influence on £, as ¢ gets large for invertible
processes (since 67d, approaches zero), all of the estimators above share the
large sample distributional properties of the likelihood estimator. In particular,
T*@®, —0,) has an asymptotic Normal distribution with mean zero and variance
(1—63), and the estimator 8, is asymptotically independent of the assumption
about the initial condition [cf. Pierce (1971, pp. 301, 304-305)].

However, these large sample properties do not extend to the case of strict
non-invertibility. First, the asymptotic properties of the different estimators
discussed above are not identical, in general, since the effect of the initial
condition on Z, does not diminish as ¢ gets large when |6,| = 1. Second, it is
easy to see that the large sample distribution of g(7)- (8, —0,) could not have
a variance proportional to (1—6%) if |0,| = 1. This problem occurs in part
because we are trying to estimate a parameter which is on the boundary of the
admissible parameter space.” Third, any estimator of 0, will never be asymp-
totically independent of the initial condition d,, so the assumptions about
the initial condition become much more important if |8,| = 1.

Nelson (1974), Kang (1975), and Osborn (1976) have compared the small
sample properties of different estimators of €, for invertible MA processes
(10,1 < 1). There is no consistent ranking of the various least squares estimators
and the maximum likelihood estimator for small sample sizes (20-30 observa-
tions), and almost all differences among these estimators disappear as the sample
size increases to 100 observations. Of course, if | 9, | is close to one the differences
among estimators diminish slowly as the sample size increases. Thus, we would
expect that the behavior of the various estimators would be different for all

7Chernoff (1954) discusses a case which has some similarities to this problem; however, the
fact that |6;| = 1is the boundary of the admissible (restricted) parameter space creates problems
which go beyond Chernoff’s example.
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sample sizes if |6;| = 1 because of the non-trivial effect of the assumption
about the initial condition 4.

Since the conditional least squares estimator, where &, is assumed equal to
zero, is the easiest to implement, and because the other estimators can involve
severe numerical problems in trying to estimate d, when [6;| = 1, we concen-
trate on the conditional least squares estimator in our Monte Carlo experiments.
While this does not allow us to compare the distributional properties of the
various estimators, we feel that the results of these experiments should be indica-
tive of the results that would be obtained from other techniques because:
(a) setting @, equal to its marginal expectation of zero is no more (or less)
arbitrary than the other techniques for estimating the initial condition in this
case, and (b) all of the estimators suffer from the problem that we are trying to
estimate a parameter on the boundary of the admissible parameter space. In
addition, since conditional least squares is the technique most widely used in
applied work the small sample properties of this estimator in the strictly non-
invertible case are intrinsically interesting in their own right.

3.3. Inference about M A parameters

If an estimate of a MA parameter is close to strict non-invertibility in an
applied situation a logical question would be whether |0, | is significantly
different from 1. Since the large sample distribution of 8, is not known if
{6, = 1, it is not clear what the appropriate test statistic would be for this
situation. Nevertheless, in our Monte Carlo experiments we examine the
properties of the ‘s-ratio’, ¢ = (0, —1)/s.e. (,), where the standard error of
0,, s.e. (9,), is estimated from a linearization of the sum-of-squares function
by analogy with linear regression techniques [cf. Nelson (1974, pp. 127-128)
or Box and Jenkins (1970, pp. 226-228)].

The z-ratios are not likely to conform to either a standard Normal or Student-¢
distribution because |9, | is almost always less than one (since the admissible
range of 0, is restricted); therefore, the rratio is likely to have a negative mean
and may be negatively skewed. In addition, Nelson (1974, p. 132) has noted
that estimated standard errors, s.e.(f,), are often substantially smaller than the
standard deviation of the sampling distribution of 8, for invertible MA para-
meters. Thus, since the z-ratio cannot be positive and the denominator s.e.(0,)
may severely understate the sampling variability of §;, we expect a relatively
large number of negative z-ratios which are large in absolute value.

In addition to the t-ratio, we examine the estimate of the standard error for
the differences regression, 6(a,), relative to the standard error for the levels
regression (1.3), é(a;). If 8, = 1 in eq. (1.4) the disturbances from the MA
process should be the same as the disturbances from the correctly specified
time trend model in eq. (1.3), while if 8, < 1, é(a,) should be greater than
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&(ay). Thus, the ratio &(a;)/6(a;) should provide a measure of predictive
efficiency which can be used to compare the differenced and undifferenced
forms of the model.®

4. Monte Carlo experiments
4.1. Linear time trend example

In order to analyze the effects of differencing on deterministic time trends
we analyze the models

Z, = a4+ p@/T)+d,, t=1,...,T, (4.1a)

A5, = pQAT)+(1—0,L)d,, ¢

[
»
=3

(4.1b)

for samples of 51, 101 and 201 observations. The samples are created by
generating sequences of i.i.d. Normal random variates {@,} with mean zero and
unit variance.® A new sample is generated for each of 1000 replications and
diagnostic checks on the serial independence and Normality of {d,} do not
reveal any irregularities in the artificial data. The time trend variables are
normalized so that E(Z)) = a and E(Z;) = a+ 8, which is analogous to increas-
ing the sample size T by observing the process (1.3) at more frequent intervals.
For these experiments o = § = 1, the time trend model (4.1a) is estimated
using linear least squares, and the moving average model (4.1b) is estimated
using a modified Gauss-Newton iterative procedure'® which constrains the
MA parameter so that |0,] < 1.

Table 1 contains summary statistics for estimates of the MA parameter 0,
in eq. (4.1b) for 1000 replications of samples of 50, 100 and 200 observations.
Because the range of the estimator is restricted, the estimator is downward
biased, although the magnitude of the average bias decreases as the sample
size increases. The sampling distributions are negatively skewed. Interestingly,
the median of the sampling distributions is approximately 0.95 for all sample
sizes, so the major effect of increased sample size is to reduce the number of
low values of 8, . There is no indication that the negative skewness or positive
kurtosis diminishes as the sample size increases.

8The ratio of the estimated residual standard deviations cannot be used to construct a
likelihood ratio test in this case since (a) the levels regression model has one parameter, o, and
one observation that the differences regression model does not have, and (b) the hypothesized
value,f; = 1,is on the boundary of the admissible parameter space.

9These pseudo-random Normal deviates are generated by Marsaglia’s rectangular-wedge-
tail method, incorporated in program ‘RANORM’, obtained from the University of Chicago
Computation Center. Kinderman and Ramage (1976) discuss some attractive properties of
generators like this one.

1oDraper and Smith (1966, pp. 267-270) discuss the Gauss—Newton method.
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The average standard errors of 8, , s.e.(f,), are substantially smaller than the
standard deviations of the sampling distributions for all sample sizes. As a
result of the bias in #, and the bias in s.e.(d,), the sampling distribution of the
t-ratio is negatively biased and the number of values of this statistic less than
—2.0 is very large. In fact, for a sample size of 200 the mean of the f-ratios is
—1.9 and almost half of the r-ratios are less than —2.0. Thus, a ‘t-test’ of
whether 8, = 1 based on estimates of 8, and s.e.(d;) could lead to very mis-
leading conclusions if a Student-f or Normal distribution is used naively to
determine an appropriate critical value for such a test. We provide the 0.05
and 0.01 fractiles of the sampling distribution of the r-ratio in our experiments
to provide a basis for such tests.

The average ratio of the standard error of the differenced model (4.1b) to
the standard error of the time trend model (4.1a), 6(a,)/é(a;), indicates that the
MA model has a residual standard deviation about six percent greater than the
correctly specified time trend model for a sample size of 50. This difference
diminishes to four and three percent for samples of 100 and 200 observations,
respectively, reflecting the fact that , is closer to unity on average as the sample
size increases. The fractiles of the sampling distribution of this ratio indicate
that the loss in prediction efficiency from incorrectly choosing the differenced
model as the correct specification would not be great for moderate sample sizes.

Table 2 contains summary statistics for estimators of the time trend coefficient
B in eq. (4.1). The true value is § = 1, so the process {Z,} has a mean which
increases over time, while the changes 4Z, have a constant mean equal to §/T.
Both estimators are unbiased and their sampling distributions conform well
to a Normal (or Student-¢) distribution. There is very little skewness or excess
kurtosis, and the studentized range statistics'! are consistent with the hypothesis
of Normality, except for the differences regression with 200 observations which
has a large studentized range statistic. However, the standard deviation of the
sampling distribution, which is a measure of the efficiency of the estimators of g,
is substantially lower for the levels regression (4.1a) than for the differences
regression (4.1b). This is because the sampling variance of j for the levels is
inversely proportional to Y7, ¢, while the sampling variance of B for the
differences is inversely proportional to T—1. Thus, ignoring problems of
estimating 6, , the variance of the sampling distribution of B decreases with 7
for the levels and with T for the differences.?

The average value of the computed standard error for f is reported in paren-
theses below the mean values of f. The estimates of the standard error of j
for the differences regression, the MA process, are generally larger than the

11David, Hartley, and Pearson (1954) derive the sampling distribution for this statistic if the
sample is drawn from a Normal population.

12J5cobs (1976) notes that a linear time trend model where the time variable is measured with
a stationary error can be estimated consistently using least squares. This occurs because £2
becomes large relative to the variance of the measurement error as 7— 00.
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Table 1
Estimator of the moving average parameter, 6, .

4z, = fAIT+1)+(1 — 6, LY.

(1) Sample moments T =50 7 =100 T = 200
Mean® 0.9205 0.9353 0.9508
(Avg.s.e) (0.0751) (0.0412) (0.0233)
Standard deviation 0.0885 0.0610 0.0422
Skewness —1.143 —0.9656 —1.041
Excess kurtosis 0.7009 0.8484 1.340
Selected fractiles: 0.50 0.9527 0.9425 0.9566

0.20 0.8449 0.8857 0.9200
0.10 0.7843 0.8517 0.8948
0.05 0.7481 0.8229 0.8727
0.01 0.6554 0.7487 0.8104

(2) t-ratios (6, — D/s.e(0,)

Mean —0.9947 —1.406 —1.858
Standard deviation 0.9697 1.108 1.224
Percent t < —2.0 21.0 36.8 417
Fractiles: 0.05 —2.638 —3.106 —3.765
0.01 —3.196 —3.819 —4.695

(3) Ratio of regression standard errors® 6(aa)|6(ay)

Mean 1.063 1.044 1.031

Standard deviation 0.0433 0.0299 0.0209

Fractiles: 0.50 1.055 1.040 1.027
0.95 1.144 1.100 1.069
0.99 1.187 1.126 1.092

*1000 replications of samples of size 50, 100 and 200 for eq. (4.1b).

bAverage value of 0, ; average standard error, s.e. (01), in parentheses.

“Ratio of the estimate of the residual standard deviation in eq. (4.1b) to the estimate of the
residual standard deviation in eq. (4.1a).

standard deviations of the sampling distributions. This is opposite from the
relationship which was observed for the estimate of the standard error of the
MA parameter in table 1.

The #-ratios associated with f, ¢t = (B—1)/s.e.(f), are also reported. The
t-ratios for the differences regression are slightly fat-tailed for a sample size
of 50, since over eight percent of the r-ratios are greater than two in absolute
value. However, this problem disappears for larger sample sizes.

Thus, even though the estimator of the MA parameter is downward biased,
the estimator of the time trend parameter § is unbiased and conforms well to a
Normal distribution. The levels estimator is more efficient than the differences
estimator because the sample variability of the regressor is greater in the levels.!3

131n the context of testing hypotheses about 8, the probability of Type I error is similar for
the levels and the differences, but the power of a test is greater in the levels than the differences.
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4.2, Stochastic regression model example

Our second example where use of the difference transformation could induce
a strictly non-invertible moving average process is

e
I

= o+px,+a,, r=1,...,T, (4.2a)

X, = X+,

AP, = o +pAZ,+(1—0,L)d,, t=2,...,T. (4.2b)

where {d,} and {#i,} are independent sequences of i.i.d. Normal deviates with
mean zero and unit variance. For the first set of experiments with eq. (4.2),
one vector of x is constructed and held constant across replications, while the
regression disturbances {d,} are the same as those used in the time trend example
reported above. Thus, we are analyzing the conditional regression model given
X = x. For the second set of experiments with eq. (4.2), a new regressor vector
is generated for each replication, so we are analyzing the stochastic (uncon-
ditional) regression model in this case. In all experiments « = 8 = 1, and
o = 0.

Table 3 contains summary statistics for estimates of the MA parameter 6,
in eq. (4.2b) for 1000 replications of samples of 50, 100 and 200 observations.
As in table 1, the estimator 8, is downward biased, although the bias decreases
as the sample size increases. The sampling distributions are negatively skewed
with the median being about 0.95 for all sample sizes. The only apparent
difference between the fixed regressor case and the stochastic regressor case is
the larger mean and median for the stochastic regressor model with a sample
size of 50.

The average standard errors of #; understate the sampling variability of 0,
for all sample sizes, with the possible exception of the stochastic regression
model for a sample size of 50. As in table 1, the bias and skewness in 8, and the
bias in s.e.(d;) cause the sampling distribution of the r-ratio to be negatively
biased with too many extreme negative values. The 0.05 and 0.01 fractiles of
the sampling distributions for the #-ratio are very close to the values in table 1,
which suggests that these might be used as critical values for tests of hypotheses
about 8, no matter what the form of the regression function.

The ratio of the standard error of the differences regression to the standard
error of the levels regression behaves almost identically to the results reported
in table 1. Thus, the difference between é(a,) and 8(a,) seems to be attributable

to the fact that 8, is less than unity, and does not seem to be a function of the
behavior of the regressor.



215

C.I. Plosser and G.W. Schwert, Non-invertible M A process

‘(87 §) UOISSAIBAI S[AAQ] AY) IO UOHBIAID plepue)s
[eNpIsal 9y} JO )BUWIISS 3Y) 0} (7 ) UOISSAIAT SIOUAISYIP dY3 10] UOHBIASD PILPUER)S [BNPISII 9} JO S}BUINSI 9Y) JO ONEY,
‘sasatyuored Ut ‘(Yg) o's ‘JOI1I0 PIepUE)s AFLIGAR (19 JO oNfBA 3FRINAY,

‘uoneoijde yoes J0J paje1ausd si *xp Jo ojdures moU B 2580 J0SS0ISI OISBYDOIS Ul J[IYM ‘Suol}

-porjdal $SOIDE JUBISUOD POY SI *X | 95D 10801801 PAXY UT *(qp) "ba 103 00T pue 001 “0S ozis Jo sejdwres jo suonyeorjdar 0001,

630°1 760°1 i€l 0ET'T 6611 el 66°0
690°1 0L0'% vO1°1 01°T Lyl (349! $6°0
L20°1 8201 o0’ 1 6£0°1 9¢0°'T 980°1 0570 -sepnoesy
1120°0 €120°0 91£0°0 71£0°0 19%0°0 700 UOIJBIASD pIepuels
0£0°'T 1€0°1T SYO'TL 0’1 990°'1T S90°I UBIN
("0)9/(P)Q ,S.40.442 pivpUD]S UOISSI4824 fo onvy ()
ey — 069V — I¥8°'€— LLLE— 610°¢— soI'e— 10°0
09°¢— STLE— oL’ ¢— Lyo'e— 988°'C— LLS'T— §0°0 ‘s9[oeI]
Ty (A 4 8°'LT Le 8¢l I'81 0'C— > J3jusdid
0ST'1 60C'T 8711 9011 65¢£6°0 8€76°0 UOIIRIAID pIEpUE]S
9 I — SOL'T— [ YA S 81T 0108°0— LTV6'0— L)
A@v.o.m\ﬁ - ﬁmv sonva-1 (7)
07€8°0 01180 8LEL'O STPL'0 LPS9°0 7€59°0 100
78L8°0 1TL8°0 97180 66180 9IPL'0 TESL'O S0°0
9L68°0 Y£68°0 (32240 €188°0 2e6L°0 068L°0 01°0
8916'0 98160 9888°0 1988°0 7680 88¥8°0 0’0
£196°0 SLS60 °Ls6’0 6956°0 91860 0rs6'0 0§°0 - S9MI0ORIY PAJO[AS
18%¥°0 601’1 A5 A! L89L°0 18%°1 ¥506°0 $1S03INY §S90X
6968°0— L60'T— Yo — 901 — - Y81 1— " SSOUMMS
61v0°0 9Tr0'0 75900 2€90°0 9680°0 ¥980°0 UONJRIASD pIEpUElS
(0520°0) (8%20°0) Tsy0r0) (T9v0°0) (6980°0) (S6L0°0) (ro's "3AY)
$6'0 SIS6°0 16£6°0 £0v6'0 00€6°0 0776'0 qUBIN
00C = .1 001l =1 0§ =.L suuzuout apduing' (1)
JOSsa1dax JOSS9I301 JOSS1391 JOssa1gax 108sa1321 105521301
o13SBYI01S paxig 211SBYI01S paxig MISBYO0)S poxig

HTG—D+ApG+ 0 =y

«(qz'P) 19pow uorssaigar ut g rojowrered ofeioae SuAOW JO J0YRWINSH

€ JlqeL



216 C.I. Plosser and G.W. Schwert, Non-invertible MA process

Table 4 contains summary statistics for estimators of the regression coefficient
B in eq. (4.2). The differences regression is estimated in two ways: (a) the
regression parameters are estimated jointly with the MA disturbance process
using nonlinear least squares, and (b) the regression parameters are estimated
using linear least squares ignoring the autocorrelation in the disturbances. The
latter case is included to illustrate the benefits available from estimating the
MA parameter. All of the estimators are unbiased and seem to have Normal
sampling distributions.

In this example the average standard errors of the regression coefficient are
relatively close to the standard deviations of the sampling distributions for all
three estimators.!* An exception is the differences/MA regression model with
200 observations which has an average estimated standard error approximately
ten percent greater than the standard deviation of the sampling distribution.
The levels regression estimator is the most efficient since its sampling variance
is inversely proportional to Y/, %?, which has an expected value of
(T+1)-T-02[2, conditional on x,. The expected value of Y7, A%? is just
(T—1)-62, so the differences regressions are less efficient. In addition, the
variance of the disturbances for the differences regression which ignores the
MA parameter is (1+6%)0? = 262, so estimating the MA parameter has a
substantial effect on the efficiency of the regression coefficient estimator for the
differences regression.'>

The ¢-ratios associated with  seem to conform reasonably well to a Normal
or Student-r distribution for all estimators, except possibly the differences
regression model with the MA parameter for a sample size of 200 which may
have too small a standard deviation and too few values greater than 2.0 in
absolute value. This is probably due to the bias in the estimated standard error
of f in this case. Thus, the probability of committing a Type I error in testing
hypotheses about # would be similar whether the levels or the differences are
used to compute j.

Table 5 contains summary statistics for estimators of the regression coefficient
B in the unconditional stochastic regression model, where a new realization of
the random walk {%,} is generated for each replication. The sampling distribu-
tions of f are unbiased and symmetric, but the levels estimator and the differences
regression estimator which is estimated jointly with the MA parameter have
leptokurtic sampling distributions as indicated by large kurtosis and studentized
range statistics. Thus, there is an interesting difference between the fixed and
stochastic regressor cases.'® The sampling distribution of j conditional on the

!4Even though the disturbances are autocorrelated in the differences regression without the
MA parameter, it can be shown that the usual formula for the standard error of a regression
coefficient is appropriate because 4%, is serially uncorrelated in this example.

15]n fact, the average estimated residual variance for the differences regression without the
MA parameter is slightly greater than 2.0 for all sample sizes.

16Ken Gaver, Martin Geisel, and Harry Roberts have aided our understanding of this
phenomenon.
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sample realization % = x, p(B|x), is Normal. However, the sampling variance
of B is proportional to (x'x)%, so it is necessary to integrate the joint density,
p(B, ) = p(B|x)-p(¥), with respect to £ in order to derive the marginal distri-
bution of 8, p(B). For example, if the regressor {X,} is a sequence of i.i.d. Normal
variates distributed independently of the regression disturbances (which is the
case in the differences regression in our example), the marginal distribution of
B, p(B), is Student-z [cf. Zellner (1971, pp. 388-389)]. This is in accord with the
results for the differences regressions which ignore the autocorrelated distur-
bances in table 5. On the other hand, the distribution of (x'x)™! is much more
complicated for the levels regression where the regressor follows a random walk.
Thus, the fat-tailed sampling distributions for § from the levels regressions in
table 5 are due to the behavior of the regressor sequence {,}. It is not clear
why the sampling distribution of f from the differences/MA regressions are
fat-tailed, but this problem seems to decrease as the sample size increases.

Except for the leptokurtosis problem, the sampling distributions of B in
table 5 are very similar to the sampling distributions conditional on % = x
in table 4. The means and standard deviations of f are similar whether the
regressor is fixed or random. Again, the levels estimator is more efficient than
the differences estimators because sample variation in {%,} is greater than sample
variation in {4%,}, and the differences estimator with a moving average para-
meter is more efficient than the differences estimator which ignores the auto-
correlated disturbances because the residual variance is smaller if the MA
parameter is estimated.

The average standard errors of f§ are smaller than the standard deviations of
the sampling distributions for all sample sizes for the differences/MA estimator.
This causes the standard deviation and the number of extreme values of the
t-ratio to be too large for this estimator. The linear least squares estimators for
the levels and the differences have #-ratios which conform quite closely to a
Student-¢ distribution with a mean of zero and a variance of unity. This may be
somewhat surprising since the standard errors of § are computed using con-
ventional formulas which assume that the regressor is fixed in repeated samples,
not stochastic.

We feel it is important to illustrate the distinction between the fixed and
stochastic regressor models through our sampling experiments. Many econo-
metric models contain exogenous variables which are stochastic, so it is necessary
to be clear about the distinction between the distribution of § conditional on
¥ = x (in table 4), and the unconditional distribution p(B) (in table 5). The
sampling behavior of the regressor {%,} can influence the form of the uncon-
ditional distribution for j. Nevertheless, the distribution of the estimator of
the moving average parameter, 8,, for the disturbances of the overdifferenced
regression model is not affected by this distinction.
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5. Conclusions and suggestions for future research
5.1. Summary of Monte Carlo results

From the point of view of empirical investigators, the question of how to
detect overdifferencing if it occurs is very important. One way to approach this
issue is to perform tests on the estimated moving average parameter for the
disturbances of the differences regression. If the MA parameter is not signifi-
cantly different from unity one might suspect overdifferencing and choose the
specification of the model in the levels of the variables.

Unfortunately, the distribution of estimators of non-invertible MA processes
is not known. A moving average process with a unitary root has no auto-
regressive representation, and such a root is on the boundary of the region of
the restricted parameter space (| 0; | < 1) which is used to identify the parameters
of the likelihood function. Therefore, most of the usual properties of likelihood
estimators do not apply.

We use a nonlinear least squares (or conditional maximum likelihood)
estimator of the MA parameter which is restricted to the region |0,] < 1.
Naturally, this estimator is downward biased and negatively skewed. Standard
errors computed using usual techniques understate the sampling variability of
the estimator (a fact which has been found by others for invertible MA processes).

Despite these shortcomings, it is important to note that the estimator of the
MA parameter for the regression disturbances seems to have the same properties
as the estimator for the univariate MA(1) process in the strictly non-invertible
case. The presence of the stochastic regressor does not seem to affect the
properties of the estimator of the MA parameter. This parallels Pierce’s (1971)
asymptotic result for invertible MA processes. Thus, even though the r-ratio for
the MA parameter is shown to depart substantially from a Normal or Student-¢
distribution, the fractiles of the sampling distributions for #; and its z-ratio
which are derived in this paper should be useful to data analysts who are
interested in testing whether overdifferencing is a problem.

We have not attempted to derive small sample or asymptotic distributions
for 8, because of the complex analytical problems associated with the likelihood
function for the non-invertible MA process. However, we have computed the
mean and variance of T%(8, —6,) from our Monte Carlo experiments in table 6.
Although the mean and variance of T#(0, —0,) decrease slightly as the sample
size increases, the values in table 6 might be used to extrapolate the results of
our sampling experiments to sample sizes we do not consider.

As expected, least squares estimators of regression parameters for over-
differenced models are unbiased and seem to have approximately Normal (or
Student-¢) distributions. If the model is correctly specified in the levels, differenc-
ing reduces the efficiency of estimators of the regression parameters since the
sample dispersion of the nonstationary regressor is greater in the levels than the
differences. However, the efficiency of the differences estimator is substantially
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Table 6

Mean and variance of T, —6,).

Mean Variance

(1) Time trend model*

T= 50 —0.562 0.392

T = 100 —0.647 0.372

T = 200 —0.696 0.356
(2) Regression model, x fixed®

T= 50 —0.552 0.373

T = 100 -0.597 0.399

T = 200 —0.686 0.363
(3) Regression model, X random®

7= 50 —0.495 0.401

T = 100 —0.609 0.425

T = 200 —0.645 0.351

2Derived from table 1.
®Derived from table 3.

improved if a moving average process is estimated for the disturbances of the
differences regression using nonlinear least squares. For all estimators, a f-ratio
based on a correctly estimated standard error'” has a distribution which
approximates the Student-s distribution, so the probability of committing a
Type I error in tests about regression parameters does not seem to be affected
by differencing.

Finally, we note that the residual variance (or the standard error of the
regression) is not substantially affected by overdifferencing if an MA parameter
is estimated for the differences regression. Although the standard error of the
overdifferenced regression is higher than the standard error of the correctly
specified levels regression (because 0, is usually less than 1), the difference is
small. Thus, the loss in prediction efficiency due to overdifferencing is not
substantial. The fractiles of the sampling distribution of the ratio 6(a,)/6(a,)
could provide another basis for testing whether overdifferencing is a problem,
since this ratio does not seem to depend on the form of the regression model.

'7In general, the formula: (x'x)"1x'Zx(x’x)~! should be used to compute the covariance
matrix for the regression parameters, where X is the estimated covariance matrix of the re-
gression disturbances. In all of our examples the usual formula: 6,2(x'x)~! yields correct
standard errors, but that certainly is not correct in general. In fact, the examples of spurious
regressions given by Granger and Newbold (1974) illustrate the dangers of using the latter
formula when it is not appropriate.
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5.2. Implications for empirical work

Our experiments indicate that the Box, Jenkins, Granger, Newbold strategy of
differencing all variables until the transformed variables have constant uncon-
ditional means over the sample period, prior to estimating regression parameters,
should not lead to serious errors of inference, even if differencing is not necessary
to induce a stationary disturbance term for the regression equation. The only
apparent cost of overdifferencing in this situation is reduced efficiency for
estimators of the regression parameters due to the reduced sample variability
of the regressor.

Of course, the question that must be answered by an empirical investigator
is whether it is plausible that non-stationary variables are related through
a constant parameter regression relationship with a stationary error term. In
some instances, such as the relationship between interest rates and subsequently
observed inflation rates analyzed by Fama (1975) or Nelson and Schwert (1977),
this may be an appropriate specification of a model. However, in many instances
regression equations which relate the levels of non-stationary variables may
capture spurious relationships due to deterministic or stochastic trends in all of
the variables. This is the phenomenon which is illustrated by Granger and
Newbold (1974). We believe that the dangers inherent in such situations are
substantially greater than those associated with overdifferencing, as we argue
in Plosser and Schwert (1977).

5.3. Relationships to other work

The scope of these experiments is necessarily limited; however, the general
principles involved should be applicable to more complicated models. For
example, if the disturbances of the levels regression follow an autoregressive-
moving average process the disturbances of the differences regression follow
an ARMA process with a unitary root in the MA polynomial. In this case, a
test for overdifferencing could be based on the distribution of the roots of the
MA polynomial. We conjecture that such an extension would not involve
significant new difficulties.

We have not explicitly considered the effect of overdifferencing on a model
where the regressor is measured with error. However, in Plosser and Schwert
(1977) we use a textbook example of the errors-in-variables problem to illustrate
the effect of overdifferencing. Differencing can cause the inconsistency of the
least squares estimator of the regression parameter to be increased if the levels
of the regressor are positively autocorrelated. (In this analysis we assume that
the variables are stationary in the levels as well as the differences.) On the other
hand, the inconsistency is reduced by differencing if the levels of the regressor
are negatively autocorrelated. If the measurement errors are autocorrelated the
results are even more ambiguous. The important thing to remember is that least
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squares estimators are inconsistent for both the levels regression and the
differences regression in this case. The real solution to this problem is not

related to differencing, it lies in finding a consistent, efficient estimator for both
the levels and the differences.

A related problem treated by Sims (1972) is the effect of differencing on
distributed lag models, where rational lag functions are used to approximate
infinite distributed lag relationships. We have not considered this problem of
misspecification, or any other problems of specification analysis. We always

assume that the model is correctly specified as a linear regression model in the
levels of the variables.

Finally, other tests of overdifferencing could be analyzed. For example, a
Bayesian posterior odds ratio, where the prior distribution on 8, is restricted

to the range —1 < 0, < 1, provides an alternative means of deciding whether
overdifferencing has occurred.
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