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Recent work by Said and Dickey (1984, 1985), Phillips (1987), and Phillips and Perron (1988)
examines tests for unit roots in the autoregressive part of mixed autoregressive integrated moving
average models (tests for stationarity). Monte Carlo experiments show that these unit-root tests
have different finite-sample distributions from the unit-root tests developed by Fuller (1976) and
Dickey and Fuller (1979, 1981) for autoregressive processes. In particular, the tests developed
by Phillips (1987) and Phillips and Perron (in press) seem more sensitive to model misspeci-
fication than the high-order autoregressive approximation suggested by Said and Dickey (1984).
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1. INTRODUCTION

Fuller (1976) and Dickey and Fuller (1979, 1981) de-
veloped several tests of whether a pth-order autore-
gressive (AR) process,

r
Y, = a+ E ¢iY:-i + u,

i=1

)

is stationary. Stationarity implies that the roots of the
lag polynomial ¢(L) = (1 — ¢, L — --- = ¢,L?) lie
outside the unit circle [see Box and Jenkins (1976) for
a discussion of stationarity in the context of AR pro-
cesses]. The null hypothesis in these tests is that the
AR process contains one unit root, so the sum of the
autoregressive coefficients in (1) equals 1. Dickey and
Fuller estimated the model

(p-1)

a+pY_,+ 2 ¢;DY,_; + u,,
i=1

Y, @)
where DY,.; = Y,_;, — Y,_;,_,, which is equivalent to
the AR model in (1), except that the coefficient p,
should equal 1.0 if there is a unit root. Dickey and Fuller
used Monte Carlo experiments to tabulate the sampling
distribution of the regression ¢ statistic 7, = (5, — 1)/
s(p,), where s(p,) is the standard error of the estimate
p, calculated by least squares. The distribution is skewed
to the left and has too many large negative values rel-
ative to the Student-t distribution. See Dickey, Bell,
and Miller (1986) for a recent discussion of autore-
gressive unit-root tests. Plosser and Schwert (1977) dis-
cussed a similar problem that arises when there is a unit
root in the moving average (MA) polynomial. This can
occur when differencing is used to remove nonstation-
arity and the true model is a stationary and invertible
ARMA model around a time trend.

This article analyzes the sensitivity of the Dickey-
Fuller tests to the assumption that the time series is
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generated by a pure AR process. In particular, when a
variable is generated by a mixed autoregressive inte-
grated moving average (ARIMA) process, the critical
values implied by the Dickey-Fuller simulations can be
misleading. Section 2 describes recent extensions of the
Dickey—Fuller test procedure suggested by Said and
Dickey (1984, 1985), Phillips (1987), Phillips and Per-
ron (in press), and Perron (1986a,b) that attempt to
account for mixed ARIMA processes as well as pure
AR processes in performing unit-root tests. Section 3
contains results of a Monte Carlo experiment that cal-
culates the size of the Dickey-Fuller and related test
statistics when the true process is ARIMA rather than
AR. Section 4 contains concluding remarks.

2. EXTENSIONS OF THE
DICKEY-FULLER TESTS

Said and Dickey (1984) argued that an unknown
ARIMA(p, 1, q) process can be adequately approxi-
mated by an ARIMA(k, 0, 0) process, where k =
o(T"*). Given this approximation, the limiting distri-
bution of the unit-root test based on a high-order AR
approximation will be the same as the Dickey-Fuller
distribution. Of course, for a given application this ar-
gument does not indicate the appropriate number of
lags k.

To understand why a finite-order AR process may
not provide an adequate approximation to a mixed
ARIMA process, it is useful to consider the infinite-
order AR process implied by an ARIMA(O, 1, 1) pro-
cess for different values of the MA parameter 6. The
autoregressive coefficients are calculated by matching
coefficients of the lag operator L in the relations n(L)
=(1-Lyd-6Ly-(1-6L)-=n(L)y=0-1L),
where =; is the autoregressive coefficient at lag i. The
autoregressive coefficients decay slowly for large ab-
solute values of the MA parameter. The sum of the
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Table 1. Empirical Size for 1%-Level Test Based on Dickey—Fuller Distribution of 7, for p, = 1

Sample size T Moving average
(DF critical value) parameter 6 AR(1) Z.() Z.) ARMA(1,1) AR(l) AR(,)

25 8 722 719 .745 .061 227 .007
(-3.75) 5 196 193 213 .083 .040 .008
.0 .009 010 015 .022 .008 .008

-5 .007 .006 .014 .025 .023 .010

-8 .007 .004 .012 .044 .031 .012

50 8 .952 .938 975 .068 .220 .009
(—3.58) 5 312 277 376 .024 .020 .007
.0 .010 .01 .01 .005 .009 .007

-5 .007 .006 .008 .010 .008 .008

-8 .006 .004 .006 .032 .005 .009

100 8 .982 962 .988 .037 .216 RO R
(-3.51) 5 374 291 417 .005 .014 .008
’ .0 011 012 012 .008 011 .010
-5 .005 .005 .004 .010 012 .010

-.8 .008 .007 .007 .019 021 .009

250 8 992 .952 981 .021 194 010
(—3.46) 5 422 .247 .366 .048 .014 .009
.0 011 011 012 .029 .009 .008

-5 .005 .005 .005 .020 .009 .009

-8 .008 .007 .006 .023 009 .009

500 8 993 .925 .968 107 231 .012
(—3.44) 5 437 .185 .286 .050 014 .009
0 .01 012 012 028 .010 .009

-5 .005 .007 007 .019 .009 .010

-.8 .006 .007 .006 .020 .007 .009

1,000 8 .994 .887 841 134 .100 .010
(—3.43) 5 .442 139 218 .055 011 .010
.0 .009 .008 010 .024 .009 .009

-5 .005 .008 .007 .021 .010 .009

-8 .006 .009 .007 .023 .009 .010

NOTE: The proportion of statistics less than the 1% critical value is trom Fuller (1976, p. 373, table 8.5.2) for the regression t test for
a unit root 7, against the 7 Y is that the p is X y around a mean. The tabie is based on 10,000
replications of an ARIMA(O, 1, 1) process, (Y — Yi—y) =& — O (t = 1, ..., T). The DF critical vaiues are in parentheses under
the sample size. The AR(1) test is based on Equation (4); the Phillips corrections to the AR(1) test, Z,,,, use Equations (6) and (7); the
ARMA(1, 1) test uses Equation (3); the AR(/s) and AR(/,2) tests use Equation (2) with /s and Iy lags, respectively, where I, and /y» are
defined in (13) and (14). The standard emor for these estimates of the size of the tests is .001.

coefficients is equal to unity (the value for the infinite
sum of all autoregressive coefficients for this nonsta-
tionary process) to four decimal places after 24 lags for
0 equal to .5 or —.5. For values of 0 equal to .8, .9,
and .95, however, the sums of the coefficients to 24
lags are equal to .9953, .9202, and .7080, respectively.
This suggests that the approximation error caused by
estimating a finite-order AR process is large for MA
parameters greater than .8. Such series have autocor-
relations for the levels of the series that decay slowly,
and first-order autocorrelations for the first differences
close to —.50 (see Schwert 1987; Wichern 1973).

Said and Dickey (1985) showed that the unit-root
estimator from an ARIMAC(1, 0, 1) process,

Y=a+pY. +u - 0u_, (3)

has the asymptotic distribution tabulated by Dickey and
Fuller (1979, 1981) when one Gauss-Newton step is
taken from initial values p, = 1 and 0 equal to a con-
sistent estimator conditional on p, = 1. They provided
limited Monte Carlo evidence showing the effect of
estimating the MA parameter ¢ on the unit-root test
statistic 7,,.

Fuller (1976, p. 371) presented the following fractiles
of the distribution of T(j, — 1) whenp, = 1 and a =
0 for an ARIMAC(1, 0, 0) process:

Yy=a+p,Y ., +u, t=1,...,T. (4

This normalized measure of bias provides another test
of the unit-root hypothesis. Dickey and Fuller (1979)
showed that tests based on this statistic are more pow-
erful against the alternative hypothesis that p, < 1 than
the test based on the 7, statistic.

The distribution of the estimator p, depends on the
structure of the ARIMA process that generated the
data. As noted by Fuller (1976, pp. 373-382), the sta-
tistic Tc(p, — 1) from a general ARIMA model has
the same distribution as T(5, — 1) from the AR(1)
model. The constant c is the sum of the coefficients y,
from the MA representation of the errors from (4),
w(L) = O(L)/¢(L). One strategy for estimating the
constant c is to use the additional coefficients from the
ARIMA(p, 0, 0) model in (2) or from an ARIMA(p,
0, g¢) model, where ¢/ are the (p — 1) autoregressive
coefficients for DY,_;.

Phillips (1987) and Phillips and Perron (in press) also
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Table 2. Empirical Size for 5%-Level Test Based on Dickey—Fuller Distribution of t, forp, =1

Sample size T Moving average

(DF critical value) parameter 6 AR(1) Z.() Z.,0.) ARMA(1,1) AR(l,) AR(y)
25 8 923 919 925 .094 522 .036
(—3.00) 5 418 .400 436 .076 .143 .038
.0 .050 .051 .0585 .037 .052 .039
-5 .030 .028 .039 .049 .090 .046
-.8 .029 .024 .035 .085 AN .051
50 .8 .989 .980 .994 .098 47 .046
(—2.93) 5 .523 454 .557 .038 .082 .035
.0 .051 .053 .049 .020 .047 .036
-5 .027 .028 027 .032 .038 .039
-8 025 .026 .026 .069 .029 .044
100 8 997 .985 .996 .053 434 .055
(—2.89) 5 573 445 .559 .024 .069 .039
. .0 .053 .058 .058 .036 .049 .043
-5 .024 .031 .026 .043 .058 .046
-8 .028 .035 .028 .062 .078 .050
250 8 999 997 .993 069 371 .054
(-2.88) 5 .604 378 489 .076 .058 .045
.0 .049 .052 .058 .065 .047 .044
-5 .024 .039 .035 .063 .048 .047
-8 .027 .037 .032 .069 .037 .044
500 8 .999 .961 .984 153 .403 .058
(—2.87) 5 .610 312 402 .081 .057 .046
.0 .053 .054 .058 .069 .052 .046
-5 .024 .037 .037 .062 .044 .046
-8 .021 .036 .035 - .065 .035 .045
1,000 8 999 932 967 .163 .229 .051
(—2.86) 5 .624 254 332 .096 .056 .050
.0 .049 .050 .055 .069 .049 047
-5 .024 .043 .044 .066 .051 .048
-8 .024 .044 .045 070 .044 .051
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NOTE: ThepfopommoimmhssmanMS%aiﬁenlmismFuﬂor(lws,p.sn.ma.sz)hrmrogmsionlwsuor

& unit root ,, against the

is that the p

is stationary around a constant mean. The table is based on 10,000

replications of an ARIMA(D, 1, 1) process, (V; = Yi—1) = & = Oa-q (t = 1,..., T). The DF critical values are in parentheses under
mawnpnm.TheAmeanuodonEquu‘m(4):meWmmmmmmz,,.msqumw)wm;m
ARMA(1, 1) test uses Equation (3); the AR(/,) and AR(/12) tests use Equation (2) with /4 and /1, iags, respectively, where /s and /12 are
dcfm.din(13)M(M).MMWMQmmdmmdmwk.wl

showed that the Dickey-Fuller tests are affected by
autocorrelation in the errors from (4). They developed
modifications of the test statistics 7, and T(5, — 1) that
have the asymptotic distributions tabulated by Dickey
and Fuller when the data follow an ARIMA(p, 0, gq)
process. In fact, these articles allowed for more general
dependence in the error process, including conditional
heteroscedasticity. These adjustments involved the
autocovariances of the errors from an ARIMA(1,0,0)
model in (4). They modified the test statistic T(p, —
1 to

Z, = T(ﬁu -1)
T _ -1
- .5(s% — s3)T? {2 (Y- — Y—l)z} , (5)
where 52 is the sample variance of the residuals u,,
T i T
sh=T 13w+ 2T Y 0y 2 uly, (6)
=1 j=1 1=j+1

and the weights w; = {1 — j/(I + 1)} ensure that the
estimate of the variance s, is positive (see Newey and
West 1987). Following the intuition of Said and Dickey

(1984), they suggested that the number of lags / of the
residual autocovariances in (6) be allowed to grow with
the sample size T.

Phillips and Perron (in press) modified the regression
ttest 7, tO

Z,, = t,(s./s7) — S(sH — si)
T - -1/2
X T{sznz (Ye-y - Y—l)z} » (D
=2

where s% is defined in (6).

Dickey and Fuller also considered tests with a time
trend included as an additional regressor, so the alter-
native hypothesis is a stationary process around a time
trend. Thus the ARIMA(1, 0, 0) model in (4) is mod-
ified so that

Y=a+ Bt - (T+1)/2] +pY_+u, (8
the ARIMA(1, 0, 1) model in (3) is modified so that
Y,=a+ B[t - (T+1)/2] +p Yy +u — Ou._,

9)

and the ARIMA(p, 0, 0) process in (2) is modified so
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Table 3. Empirical Size for 1%-Level Test Based on Dickey—Fuller Distribution of t. for p. = 1

Sample size T Moving average

(DF critical value) ~ parameter 6 AR(1) Z.(l) Z.f) ARMA(1,1) AR() AR()
25 8 669 669 670 033 182 007
(-4.38) 5 241 241 251 041 048 007
0 010 010 016 .07 010 .009
-5 002 002 008 024 036 013
-8 002 002  .008 030 049 015
50 8 989 987 993 049 232 009
(~4.15) 5 470 452 531 021 025 007
0 010 011 008 003 008 007
-5 001 002 002 .07 006 .008
-8 001 001  .002 025 003 010
100 8 1000 999 1000  .033 307 014
(—4.04) 5 612 537 703 003 020 007
A 0 009 011 008 002 010 008
-5 002 003 002 .08 014 008
-8 002 002 001 015 027 008
250 8 1.000 1.000 1.000 004 322 012
(-3.99) 5 688 485 676 003 015 009
0 o011 013 014 006 010 008
-5 002 004 002 009 008 .009
-8 001 004 002 014 005 009
500 8 1.000 999  1.000 020 399 012
(-3.98) 5 709 386 575 016 016 .009
0 012 012 014 015 010 009
-5 001 004 003 013 007 008
-8 001 004 003 016 005 009
1,000 8 1.000 998  1.000 067 169 013
(-3.96) 5 720 300 469 034 013 010
0 010 012 014 020 010 009
-5 002 007 006 020 010 010
-8 002 006  .005 026 007 010

NOTE: The proportion of statistics less than the 1% critical value is from Fuller (1976, p. 373, table 8.5.2) for the regression t test

for a unit root 1, against the alternative hyp is that the p

y around a time trend. The table is based on 10,000 replica-

tions of an ARIMA(O, 1. 1) process, (Y; — Y;_3) = & — Og_ (t = 1, ..., T). The DF critical values are in parentheses under the
sample size. The AR(1) test is based on Equation (8); the Phillips corrections 10 the AR(1) test, Z,,, use Equations (12) and (6); the
ARMA(1, 1) test uses Equation (9); the AR(/s) and AR(/y2) tests use Equation (10) with /s and /s, lags, respectively, where I and /2
are defined in (13) and (14). The standasd error for these estimates of the size of the tests is .001.

that
Y= a+ p[t - (T + 1)/2]

(p=-1)
+p.Y i+ X $/DY,_; + u,. (10)

i=1
The regression ¢ tests 7, are important because Evans
and Savin (1984) showed that z, statistics are a function
of the unknown intercept a in (2) or (4). On the other
hand, including a time trend in (8), (9), or (10) even
when the trend coefficient § = 0, makes the distribution
of the autoregressive parameter estimate j, indepen-
dent of a. In empirical applications in which knowledge
of the value of the intercept a is unavailable, inclusion
of a time trend is probably a prudent decision in per-
forming unit-root tests.

Phillips and Perron (in press) developed adjustments
to the Dickey~Fuller tests T(p, — 1) and , in which
the alternative hypothesis is a stationary ARIMA(p, 0,
q) process around a deterministic time trend. They show
that the test statistic

Z, = T(p. = 1) = (sh — si)(T*/24Dxx) (11)
has the asymptotic distribution tabulated by Dickey and

Fuller for T(p, — 1) inthe ARIMAC(1, 0, 0) case, where
Dyy is the determinant of the regressor cross-product
matrix. Their modification to the statistic z, is

Z., = tsulsn) = (b = SHTHsnA(3Da) 7).
(12)

This statistic should have the asymptotic distribution
tabulated by Dickey and Fuller for 7,, even when the
regression errors in (8) are autocorrelated.

3. A MONTE CARLO EXPERIMENT FOR
UNIT-ROOT TESTS

The Monte Carlo experiment examines the effects of
model misspecification on the size of unit-root tests for
mixed ARIMA processes. The experiment constructs
the data to follow an ARIMA(O, 1, 1) process Y, =
Y_,+u ~6u_, (t=-19,...,T), where the errors
{u,} are serially uncorrelated standard normal variables.
The data are generated by setting u_, and Y _, equal
to 0 and creating T + 20 observations, discarding the
first 20 observations to remove the effect of the initial
conditions. Samples of size T = 25, 50, 100, 250, 500,
and 1,000 are used in the experiments. Each experiment
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1

Sample size T Moving average

(DF critical value) parameter 6 AR(1) Z.(,) Z2.(,) ARMA(1,1) AR(l,) AR(;)
25 8 .900 .902 .867 .052 466 .033
(—3.60) 5 514 .509 484 .056 .166 .034
.0 .050 .051 .048 .042 .052 .041
-5 .013 .013 .022 .043 120 .047
-8 011 .009 .019 062 159 .059
50 8 1.000 .999 1.000 .070 .518 .045
(—3.50) 5 .709 .669 .753 .033 .099 .032
.0 .052 .056 .038 .010 .045 .034
-5 .009 .013 .010 .026 .033 .039
~.8 .009 .010 .009 .058 .020 .044
100 .8 1.000 1.000 1.000 .047 .568 .055
(—3.45) 5 794 .704 .831 .006 .079 .039
.0 .054 .060 .050 .015 .044 .040
-.5 011 .020 011 .031 .061 .040
-8 .007 .016 .009 .047 .096 .043
250 8 1.000 1.000 1.000 .009 551 .056
(—3.43) 5 .841 .640 .789 .014 .064 .042
.0 .051 .062 .065 .032 .050 .047
-5 .008 .026 .016 .042 .042 .042
-8 .008 .026 .014 .051 .030 .043
500 8 1.000 1.000 1.000 .046 .613 .057
(—3.42) .5 .853 .545 .704 .041 .065 .046
.0 .052 .057 067 .057 .049 .048
-5 .008 .030 .028 .061 .042 .046
-8 .007 .027 .026 .063 .029 .048
1,000 8 1.000 .999 1.000 .100 350 .051
(-3.41) 5 .858 453 .600 .07 .053 .047
0 .053 .056 .063 072 .051 .046
-5 .008 .036 .037 .069 .048 .049
-8 .008 .039 .038 .075 .041 .051
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NOTE: mumoimmmmnmmmmsmmmuws p. 373, table 8.5.2) for the regression ¢ test

for a unit root . against the yp that the p

tions of an ARIMA(O, 1, 1) process, (Y; — Y1) = & — Og-1 (t = 1, .

is stationary around a time trend. The table is based on 10,000 replica-

. T). The DF critical values are in parentheses under the

sample size. The AR(1) test is based on Equation (8); mmmbmwnmz".mEqulﬁmsuz)m(s);"n
ARMA(1, 1) test uses Equation (9); the AR(/y) and AR(/12) tests use Equation (10) with /s and /s, lags, respectively, where /s and /2
are defined in (13) and (14). The standard error for these estimates of the size of the tests is .007.

is replicated 10,000 times to create the sampling distri-
bution for the test statistics. The MA parameter @ is set
equal to .8, .5, 0, —.5, and —.8, which implies first-
order autocorrelations for the first differences of these
series of —.49, —.40, 0, .40, and .49. The first-order
autocorrelation coefficient for an ARIMA(O, 0, 1) pro-
cess equals —6/(1 — 6%). Higher-order autocorrelations
equal 0.

3.1 Regression t Tests

Several tests of nonstationarity are performed on each
data series. First, the regression ¢ test from (4) studied
by Dickey and Fuller is calculated to illustrate the prob-
lems that occur when the data are generated by a pro-
cess other than AR(1). Second, two versions of the
Phillips and Perron (1988) test are calculated as follows,
using different numbers of lags / of the residual auto-
correlations in calculating s% in (6):

I, = int{4(T/100)*} (13)

and
= int{12(7/100)"4}, (14)

_?-
~
|

sol, = 4and l;, = 12 when T = 100 (when T = 25,
l,=2andl, =8 whenT = 1,000,/, = 7and [}, =
21). Third, an ARIMA(1, 0, 1) model is estimated to
test whether the autoregressive coefficient p, equais 1.0,
using the ¢ test 7, = (p, — 1)/s(p,), where s(p,) is the
standard error calculated by an iterative nonlinear least
squares algorithm. Note that this is not the procedure
suggested by Said and Dickey (1985); their results
require only one Gauss—Newton step from the unit
root. Nevertheless, empirical researchers who estimate
ARIMAC(1, 0, 1) models and discover an estimated au-
toregressive parameter close to unity would want to
know the reliability of the ¢ test for the unit root when
iterative least squares is used. Fourth, an AR(/,) model
is estimated in Equation (2) and the regression ¢ test is
used to test whether p, equals 1. Finally, an AR(/»)
model is estimated in Equation (2) to calculate 7,. The
latter tests follow the suggestion of Said and Dickey
(1984) to use a high-order autoregressive process to
approximate an unknown ARIMA process in which the
order of the autoregression grows with the sample size
T as in (13) and (14).

Table 1 contains estimates of the sizes of tests using
the 1% critical values from the Dickey-Fuller distri-
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Table 5. Empirical Size for 1%-Level Test Based on Dickey—Fuller
Distribution of T(p, — 1) for p, = 1

Sample size T Moving average
(DF critical value) parameter AR(1) Z,0) 2.0z ARMA(1, 1) AR(l) AR(;)

25 8 .818 .805 750 210 .637 .180
(-17.2) 5 .254 .238 .267 115 174 .150
.0 .008 .010 006 .035 .046 124

-5 .000 .001 .000 013 .092 123

-8 .000 .000 .000 .008 129 126

50 8 972 .948 .987 .283 .562 207
(—-18.9) 5 374 .307 446 .070 .098 167
.0 .009 012 .007 .023 .042 173

-.5 .000 .002 .000 oM 029 159

-8 .000 .001 .000 01 016 .164

100 8 .991 .966 992 196 460 178
(—19.8) 5 439 311 .463 .034 .058 27
’ .0 .010 012 .010 .015 .033 128
-5 .001 .003 .001 .009 .038 129

-8 .000 003 .000 .010 061 132

250 .8 .996 957 .985 215 326 .086
(—20.3) 5 .488 .265 400 031 031 .065
.0 .010 011 013 012 .019 .063

-.5 .000 .005 002 012 .020 .064

-.8 .000 .005 .003 .01 .013 .059

500 8 .997 .932 973 210 321 048
(—20.5) 5 497 202 314 .048 021 035
.0 .011 .01 014 021 014 032

-5 .001 005 .005 014 013 035

-8 .000 .006 .004 013 .008 .036

1,000 8 997 .895 .949 144 145 .024
(—20.7) 5 499 152 .240 060 016 022
0 .009 .010 .01 023 .013 .023

-5 .000 .007 .006 018 013 .022

-8 .000 .008 .007 .020 .010 .024

NOTE: The proportion of statistics less than the 1% critical vaiue is from Fuller (1976, p. 371, table 8.5.1) for the normalized bias of
the unit-root estimator, T(3, — 1). The table is based on 10,000 rephcations of an ARIMA(O, 1, 1) process, (Y; — Y1) = & — Oy
t=1,.... T). The DF critical vaiues are in p: under the sample size. The AR(1) tast is based on Equation (4); the Phillips
corrections to the AR(1) test, Z,,. use Equations (5) and (6); the ARMA(1, 1) test uses Equation (3); the AR(/¢) and AR(/12) tests use
Equation (2) with [, and /1, lags, respectivety, where I, and /12 are defined in (13) and (14). The latter tests uss Fulier's (1976} correction
¢ multiplied times the raw test statistic, where ¢ = 1/(1 — ¢ — - — ¢p) is & function of the additional AR parameters estimated for
that modei. The standard error for these estimates of the size of the tesis is .001.

bution for 7, for the six different test statistics [AR(1);
Phillips—Perron with I, lags, Z,,(/); Phillips-Perron
with I, lags, Z,(l;;); ARIMA(1, 0, 1); AR(L); and
AR(l,,)] for the six different sample sizes (T = 25, 50,
100, 250, 500, and 1,000) and for the five different
values of the MA parameter for the true process (6 =
.8,.5,0, —.5, and —.8), where the alternative hypoth-
esis is a stationary ARMA process around a constant
mean. Table 2 contains the estimates of the sizes of tests
using the 5% critical values. These tables do not report
the upper tail of the sampling distributions because the
usual alternative hypothesis is that the process is sta-
tionary (p, < 1). As previously reported by Dickey and
Fuller, the distribution of the 7, statistics has a negative
mean and is skewed toward negative values for all of
the cases considered in these experiments. Additional
information about these sampling distributions is avail-
able from me on request. The simulations were pro-
grammed in FORTRAN using the IMSL subroutine
GGNOF to generate pseudorandom normal variates.
All results were checked using the RATS computer
program.

The first thing to note about Tables 1 and 2 is that
the simple AR(1) test is severely affected by the pres-
ence of MA components in the data-generation process.
The estimated size for this test is positively related to
the MA parameter 0, being too large for § = .5 or .8
and too small for § = —.5 or —.8. Of course, this
problem is exactly what motivates the tests proposed
by Said and Dickey (1984) and Phillips and Perron
(in press).

Second, the Phillips—Perron tests do not have distri-
butions that are close to the Dickey-Fuller distribution,
especially for 6 = .5 or .8. At both the 1% and 5%
levels, the size of the Phillips—Perron tests is much larger
than the nominal size of the test, even for samples as
large as T = 1,000. As the number of lags of the residual
autocorrelations used in (6) increases from /, to /;,, the
size estimates become farther away from the Dickey-
Fuller results. The Phillips—Perron tests are much closer
to the Dickey-Fuller distribution for negative MA pa-
rameters § = —.5 and —.8, although the size is too
small for these cases.

The second thing to note about Tables 1 and 2 is that
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Table 6. Empirical Size for 5%-Level Test Based on Dickey—Fuller
Distribution of T(p, — 1) for p, = 1

Sample size T

Moving average

(DF critical value) ~ parameter §  AR(1) Z,(l) Z.(.) ARMA(1,1) AR{,) AR(,)
25 8 960 946 930 322 807 225
(-12.5) 5 490 443 483 204 311 191
0 043 049 030 .085 107 161
-5 004 013  .004 050 181 162
-8 002 .010  .002 038 230  .164
50 8 996 984  .997 385 730 279
(-13.3) 5 592 485 611 140 195 236
0 051 057  .043 073 104 234
-5 004 022 .005 .050 076 217
-8 002 017  .003 045 049 224
100 8 999 988  .998 298 635  .266
(-13.7) 5 633 468 597 096 137 197
0 052 058  .056 061 090  .204
-5 003 024  .010 047 105 204
-8 003 025 .010 048 143 206
250 8 1000 980  .995 322 502 164
(—14.0) 5 664 401 523 100 092 135
0 049 056  .060 063 068 .130
-5 004 036  .031 056 064 126
-8 003 .032 .024 049 047 121
500 8 999 968  .988 269 498 114
(~14.0) 5 671 341 436 102 076  .092
0 052 055  .061 071 061  .092
-5 004 036 .037 062 056  .096
-8 002 034 034 055 036  .093
1,000 8 1000 941 972 179 293  .083
(-14.1) 5 675 276  .358 103 063 077
0 048 050 054 064 057 073
-5 005 039 .040 059 056  .075
-8 003 .038 041 057 045 075
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NOTE: The proportion of statistics less than the 5% critical vaiue is from Fuller (1976, p. 371, table 8.5.1) for the normalized bias
of the unit-root estimator, 7(5, — 1). The table is based on 10,000 replications of an ARIMA(D, 1, 1) process, (Y; — Yi_1) = & = Og-4

t=1,..., T). The DF critical values are in p

under the sample size. The AR(1) test is based on Equation (4); the Phillips

corrections 10 the AR(1) test, Z,,,, use Equations (5) and (6); the ARMA(1, 1) test uses Equation (3); the AR(/s) and AR(/;2) tests use
Equation (2) with /4 and /y2 lags, respectively, where /, and /;, are defined in (13) and (14). The latter tests use Fuller's (1976) comection
€ multiplied times the raw test statistic, where ¢ = 1/(1 ~ ¢1 — - ~ ¢} is a function of the additional AR parameters estimated for
that model. The standard eror for these estimates of the size of the tests is .007.

estimating an MA parameter along with the unit root
changes the behavior of the sampling distribution for
the test statistic. This is interesting because Dickey and
Fuller showed that asymptotically the unit-root test 7,
is not affected by estimation of higher-order autore-
gressive parameters. Said and Dickey (1985) showed
that the asymptotic behavior of the unit-root test should
not be affected by the estimation of MA parameters
when only one iterative step is taken from the unit root.
For positive values of the MA parameter 8, the size of
the ARIMA(1, 0, 1) test is above the nominal size based
on the Dickey-Fuller distribution. This difference is
largest for both small (T = 25 or 50) and large (T =
500 or 1,000) sample sizes, with the size being closest
for moderate sample sizes (T = 100 or 250). The ap-
parent lack of convergence to the Dickey-Fuller sta-
tistic as the sample size grows contrasts with the results
of Said and Dickey (1985), who examined samples of
49 and 99 observations. Apparently, the distinction be-
tween the one-step method proposed by Said and Dickey
versus the iterative estimation used in these experi-
ments is important.

The tests based on the [,-order autoregressive model
are close to the Dickey-Fuller results for values of the
MA parameter 6 equal to .5, 0, —.5, or —.8. With §
equal to .8, however, the AR(/,) approximation is de-
ficient in that the size of the test is well above the
nominal size using the Dickey-Fuller distribution, al-
though this problem seems to be reduced as the sample
size grows.

The size estimates based on the /j;-order autoregres-
sive model are closer to the nominal size than for the
AR(l,) model. The only notable departure from the
Dickey-Fuller results is for § equal to .8. In this case,
with small sample sizes (T = 25) the size of the AR(/},)
test is below the nominal size based on the Dickey-
Fuller distribution.

Tables 3 and 4 contain estimates of the size of unit-
root tests at the 1% and 5% levels, respectively, where
the alternative hypothesis is a stationary ARMA pro-
cess around a time trend. As noted by Dickey and Fuller,
including a time trend causes the critical values of 7, to
be lower than 7, (i.e., the regression ¢ statistic must be
more negative to reject the unit-root hypothesis). Nev-
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Table 7. Empirical Size for 1%-Level Test Based on Dickey—Fuller
Distribution of T(p, — 1) forp. = 1

Sample size T Moving average

(DF critical value) parameter 6 AR(1) Z,(0) Z.(2) ARMA(1,1) AR(,) AR(,)
25 .8 721 721 370 .166 711 121
(—22.5) 5 267 259 .156 145 306 122
.0 .008 009 .003 .057 106 117
-5 .000 .000 .000 .016 216 110
-8 000 000 000 010 219 112
50 8 994 890 .981 355 .746 245
(~25.7) 5 .505 469 574 .130 .198 232
.0 .008 .008 .005 032 .090 233
-5 .000 .o .000 014 .060 212
-8 .000 .000 .000 010 .033 207
100 8 1.000 999 1.000 .288 .684 322
(—-27.4) 5 649 541 745 064 113 .260
0 .009 012 .008 .020 .061 270
-5 .000 .002 .000 011 .086 27
-.8 .000 .001 .000 .009 126 .280
250 8 1.000 1.000 1.000 130 544 195
(—-28.4) 5 728 .486 .702 028 .048 147
.0 012 016 016 017 .036 152
-5 .000 .003 .000 .009 .028 149
-8 .000 003 000 012 017 141
500 8 1.000 999  1.000 136 532 .094
(-28.9) 5 748 .385 596 .026 .034 074
.0 .010 .012 015 .013 .019 .070
-5 .000 .004 002 011 .015 .069
-8 .000 .004 .002 .010 .008 .072
1,000 8 1.000 997 1.000 .102 237 043
(~29.5) 5 .746 298 477 .040 019 038
0 .009 .010 014 .015 016 .039
-5 .000 .006 004 015 .014 .040
-8 .000 .006 .004 015 011 .041

NOTE: The proportion of statistics less than the 1% critical value is from Fuller (1976, p. 371, table 8.5.1) for the normalized bias of
the unit-root estimator, T(5, — 1), where a time trend is included as an additional regressor in the estimated model. The tabie is based
on 10,000 replications of an ARIMA(0, 1, 1) process, (Y; — Yi-y) = g ~ Oy (t = 1,..., T). The DF critical values are in parentheses
under the sample size. The AR(1) test is based on Equation (8); the Phillips corrections to the AR(1) test, Z,., use Equations (11) and
(8): the ARMA(1, 1) test uses Equation (9); the AR(/s) and AR(/;2) tests use Equation (10) with /s and /s lags, respectively, where /¢
and /s are defined in (13) and (14). The latter tests use Fuller's (1976} correction ¢ multiplied times the raw test statistic, where ¢ =

W(1— @y — -
of the size of the tests is .001.

ertheless, the relative patterns in Tables 1 and 2 are
repeated in Tables 3 and 4. For example, the sizes of
the ARIMAC(1, 0, 1) test and of the AR(/,) test are
above the nominal size based on the Dickey—Fuller crit-
ical values for 8§ = .8. Asin Tables 1 and 2, the higher-
order autoregressive approximation AR(/;;) has size
close to the nominal level for sample sizes greater than
50. The Phillips—Perron tests have sizes that are furthest
from the nominal size, with the largest departures for
cases in which 8 is positive. In fact, with § = .8, the
Phillips—Perron tests reject a unit root over 9% of the
time for a nominal 1% level test for sample sizes greater
than 50.

Thus a low-order autoregressive approximation can
lead to misspecification of unit-root tests when the MA
parameter is large. Higher-order AR processes seem to
mitigate the problem (although the order of the AR
process necessary to provide an adequate approxima-
tion can be quite large for & = .8 or higher). Unit-root
tests based on the mixed ARIMA(1, 0, 1) model require
moderate sample sizes before the Dickey-Fuller frac-
tiles are accurate.

— ¢p) i a function of the addtional AR parameters estimated for that model. The standard emor for these estimates

3.2 The Distribution of the Normalized
Unit-Root Estimator

Tables S and 6 contain estimates of the size of tests
based on the normalized unit-root estimator T(j5, —
1) at the 1% and 5% levels, respectively. Six different
tests are considered [AR(1); Phillips-Perron with /,
lags, Z,,(l); Phillips-Perron with [/, lags, Z,.(l);
ARIMA(1, 0, 1); AR(/,) corrected using the estimated
value of the autoregressive parameters; and AR(/};)
corrected using the estimated value of the autoregres-
sive parameters] for the six different sample sizes (T =
25, 50, 100, 250, 500, and 1,000) and for the five dif-
ferent values of the MA parameter (¢ = .8, .5,0, —-.5,
and —.8), where the alternative hypothesis is a station-
ary ARMA process around a constant mean.

In many ways the resulits in Tables 5 and 6 are easier
to summarize than the results in Tables 1-4. For the
AR(1) model, the estimated size is above the nominal
level for @ equal to .8 and .5, and the difference in-
creases with the sample size. The corrections suggested
by Phillips and Perron (in press) do not reduce this
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Table 8. Empirical Size for 5%-Level Test Based on Dickey—Fuller
Distribution of T(p, — 1) forp, = 1

Sample size T

Moving average

(DF critical value) parameter 6 AR(1) Z,(l) Z,.) ARMA(1,1) AR(l,) AR(,)
25 8 927 927 652 .266 .845 139
(-17.9) 5 .546 531 .359 234 457 145
.0 040 .046 014 113 .187 .138
-5 .003 007 .001 .058 332 .132
-8 .000 .004 .000 .036 403 .133
50 .8 1.000 .999 .998 .440 .858 292
(—19.8) 5 .740 673 776 .208 320 .283
0 .045 056 024 .093 A7 273
-5 .002 010 .001 055 A21 .259
-8 001 .008 .000 045 077 251
100 8 1.000 1.000 1.000 376 .821 408
(—20.7) 5 .826 707 .852 139 220 .343
.0 050 .061 .045 .071 143 .355
-5 .003 .016 .002 .050 RYA .353
-8 .001 015 001 .046 .238 .363
250 8 1.000 1.000 1.000 .261 719 .293
(-21.3) 5 .869 .641 .805 .089 128 .238
.0 .052 .062 069 064 097 248
-5 .001 .023 011 .053 .082 237
-8 001 .025 o 049 .055 .231
500 .8 1.000 1.000 1.000 213 Nall .186
(—21.5) 5 879 .551 719 .080 .095 1582
.0 .053 .059 .068 062 072 161
-5 .002 .030 .025 .054 .062 147
-8 001 .027 .023 .050 .037 149
1,000 8 1.000 899 1.000 136 431 114
(—21.8) 5 .879 455 611 .081 .070 099
.0 .052 .055 .063 .059 .065 107
-5 .001 .035 .035 053 .062 109
-8 .001 .035 034 054 046 103
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NOTE: The proportion of statistics less than the 5% critical vaiue is from Fuller (1876, p. 371, table 8.5.1) for the normalized bias of
the unit-root estimator, T(5, — 1), where a time trend is included as an additional regressor in the estimated model. The table is based
on 10,000 rephcations of an ARIMA(O, 1, 1) process, (Y, — Vi_y) = & — 04 (t = 1,..., T). The DF critical vaiues are in parentheses
under the sample size. The AR(1) test is basad on Equation (8}; the Philiips comections to the AR(1) test, Z,,,, use Equations {11) and
(6); the ARMA(1, 1) test uses Equation (9); the AR(/,) and AR(/2) tests use Equation (10) with / and /2 lags, respectively, where /s
and )y, are defined in (13) and (14). The iatter tests use Fuller's (1976) commection ¢ multiphed times the raw test statistic, where ¢ =

U(t= ¢y — =
of the size of the tests is .007.

problem much, and the use of more lags /,, harms the
performance of the test in this case.

The results for the ARIMA(1, 0, 1) model are in-
teresting. For negative values of 6, the size is close to
the nominal size from the Dickey-Fuller distribution
for all sample sizes. For positive values of 0, the esti-
mated size is higher than the nominal size for all sample
sizes. Unfortunately, 1 did not compute the “corrected”
version of this test, T(1 — 6)(5, — 1), but such a
correction probably would have improved its perform-
ance substantially.

The AR(/,) test yields estimates of the size that are
systematically related to the MA parameter 6. Higher
values of 0 yield lower estimates of the unit root, so
the AR(/,) size estimates are well above the nominal
size based on the Dickey-Fuller distribution when 6
equals .8. The AR(/,) size estimates are too low when
0 equals —.5 or —.8. These problems are reduced for
larger sample sizes.

The ARC(/;,) test is better than the AR(/,) test for
larger sample sizes but worse for smaller sample sizes.
For small sample sizes (25 and 50), the larger number

~ ¢p) is a function of the additional AR parameters estimated for that modei. The standard error for these estimates

of parameters that must be estimated in the AR(/;;)
model apparently biases the unit-root estimator down-
ward. Note that even when the MA parameter ¢ equals
0 so that the true process is a random walk as originally
assumed by Dickey and Fuller, the estimated size for
the AR(/;,) test is well above the nominal size of the
test. For large samples (T = 250 or above), the sizes
are closer to the nominal level of the tests, although
they are still too high.

Tables 7 and 8 contain estimates of the size of tests
based on the normalized unit-root estimator T(5, — 1)
at the 1% and 5% levels, respectively, where the al-
ternative hypothesis is a stationary ARMA process
around a time trend. The relative patterns in Tables 7
and 8 are virtually identical to those in Tables 5 and 6.
As noted by Fuller (1976), the size of the Dickey—Fuller
tests is related to the MA parameter §. When 0 = .8,
the estimated size is far above the nominal level of the
test. The corrections suggested by Fuller stabilize the
behavior of the statistic for different values of 6, al-
though the size of these tests is above the nominal size
using the Dickey—Fuller distribution. The corrections
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suggested by Phillips and Perron (in press) do not work
as well, since the estimated size remains well above the
nominal size for positive values of 0.

The effects of model misspecification are clearer in
the normalized bias tests (Tables 5-8) than in the ¢ tests
(Tables 1-4). When the data are generated by an in-
tegrated moving average process, high-order autore-
gressive approximations yield biased estimates of the
unit-root coefficient. With positive MA parameters, the
unit-root coefficients are too small, and with negative
MA parameters, the unit-root coefficients are too large.
Even though the results of Dickey and Fuller (1979)
suggested that 7(j, — 1) provide , a more powerful test
than the 7, statistic when p, < 1. the preceding results
suggest that the r, and t, statistics are less sensitive to
model misspecification. The corrections to the nor-
malized unit-root estimator suggested by Phillips (1987)
and Phillips and Perron (in press) do not work well in
the cases examined here. The corrections suggested by
Fuller (1976) improve the behavior of the normalized
unit-root test for high-order autoregressive models with
very large sample sizes, but they distort the size of the
test in small-to-moderate samples.

3.3 Further Analysis of the Phillips and
Phillips—Perron Tests

The Phillips (1987) and Phillips and Perron (in press)
tests perform poorly in cases in which the true data are
generated by an ARIMA(O, 1, 1) process with § = .5
or ¢ = .8. This was documented earlier by the Monte

Carlo experiments of Perron (1986a), although the ex-
tent of the problem was not as clear in his work. Phillips
and Perron (in press), in Monte Carlo work that post-
dated this article, found results that are similar to the
preceding results. It is surprising that, with sample sizes
as large as 500 or 1,000, these tests are not close to the
Dickey-Fuller distribution. as they should be in “large
samples.”

To provide further insight into this problem, addi-
tional Monte Carlo experiments are performed to ana-
lyze the Phillips—Perron tests, Z,,(!) and Z, (/). The
procedure discussed previously is used, except that only
the case with 0 = .8 is considered. Sample sizes of T
= 1,000 and T = 10,000 are used. The number of
residual autocorrelations / used to calculate the variance
5% in (6) is varied from 0 (no adjustment) to /;, (I, = 7
and l;, = 21 when T = 1,000; /, = 12 and {,, = 37
when T = 10,000). Table 9 contains the 5% and 1%
fractiles of the sampling distributions from 10,000 rep-
lications for the Phillips—Perron test Z, (I). Table 10
contains the 5% and 1% fractiles of the sampling dis-
tributions from 10,000 replications for the Phillips—Per-
ron test Z, (/). Tables 9 and 10 also contain the esti-
mated size of the 5%-level and 1%-level tests in
parentheses below the estimated critical values.

There are two questions about the best way to do the
Phillips—Perron tests. First, there is a question of the
number of lags of the residual autocorrelations / to use.
Second, there is a question about the way to estimate
the variances s2 and s%,.

Table 9. 5% and 1% Fractiles of the Phillips-Perron Test, Z,.(1), for an ARIMA(1, 0, 1) Model
Withp, = 1,0 =8, and T = 1,000 or 10,000

Sample size T = 1,000

Sample size T = 10,000

Residuals Differences Residuals Differences
Lags. 5% 1% 5% 1% 5% 1% 5% 1%
1 fractile fractile fractile fractile fractile fractile fractile fractile
0 -366.2 —466.9 -58335 -730.7
(.999) (.996) (1.00) (.999)
" —296.2 -401.5 -1874 -2395 -301.0 -4218 -2748 -3726
(.986) (.958) (.983) (.947) (.993) (.970) (.993) (.969)
2 -299.8 -418.9 -1286 -1626 —-2327 -3412 -1872 -2593
(.867) (.920) (.946) (-875) (.970) (.910) (.970) (.906)
3 -3226 —456.6 -985 -1247 -2045 -310.1 -143.6 -197.2
(.953) (.901) (.903) (.806) (.936) (.852) (.929) (.839)
4 -351.8 -498.3 ~-80.1 -1018 -1942 -3007 -1188 -160.8
(.944) (.893) (.860) (.755) (.902) (.807) (.884) (.779)
l —546.1 -817.8 -53.2 —-67.6 243 -97.9 -53.7 -73.7
(.710) (.672) (.768) (.647) (.024) (.022) (.611) (.414)
[ -9538 -12915 -244 -300 -5410 -9755 -27.0 -36.9
(.976) (.954) (.632) (.521) (.851) (.784) (.268) (.120)
DF ~-14.1 -20.7 -14.1 -20.7 ~-14.1 -20.7 -14.1 -20.7
(.050) (.010) (.050) (.010) (.050) (.010) (.050) (.010)

NOTE: The sampling distribution of the normalized bias statistic, Z,, (/). is against the alternative hypothesis that the process is stationary
around a constant mean. The table is based on 10,000 replications of an ARIMA(D, 1, 1) process, (Y; — Yi_4) = & — g (t =
1,...,T),witho = Band T = 1,000 or 10.000. The Phillips—Perron comrections use Equations (5), (6). and (7) for / lags of the residual
autocorrelations. For 7 = 1,000,/s = 7 and /12 = 21; for T = 10,000, /s = 12 and /s = 37. The percentage of rejections using the
OF critical value is in parentheses under each of the fractiles (i.e., for a S%-level tast, this should be .05 if the approximation to the DF

distribution is accurate). The last row, lab

OF,

the

YT

ic DF critical values and rejection percentages.
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Table 10. 5% and 1% Fractiles of the Phillips—Perron Test, Z,.(I), for an ARIMA(1, 0, 1) Model
Withp, = 1,0 = .8, and T = 1,000 or 10,000

Sample size T = 1,000

Sample size T = 10,000

Residuals Differences Residuals Differences
Lags 5% 1% 5% 1% 5% 1% 5% 1%
/ fractile fractile fractile fractile fractile fractile fractile fractile
0 -14.96 -17.43 -16.56 -19.51
(1.00) (.997) (1.00) (.997)
1 -13.82 -16.55 -11.68 -—13.89 -12.60 -15.00 -12.06 -14.15
(.992) (-968) {.991) (.960) (.986) (.953) (.986) (.951)
2 -13.88 -16.79 -10.41 -12.63 -11.12 -13.60 -10.05 -11.99
(.976) (.933) (.960) (.888) (.949) (.879) (.945) (.873)
3 -14.25 -17.28 -9.79 -12.08 -10.50 -13.03 -8.92 -10.62
(.962) (.911) (.915) (.804) (.909) (.825) (.898) (.805)
4 -14.73 -17.85 -9.38 -11.71 -10.25 -12.89 -8.19 -9.73
(.955) (.902) (.863) (.727) (.868) (.778) (.851) (.736)
A -17.53 -21.46 -8.91 -11.45 -3.28 -8.75 ~-5.87 -7.20
(.674) (.644) (.716) (.528) (.055) (.048) (.577) (.409)
Iz —-2264 —-26.53 -9.00 -12.31 -16.69 —-22.40 -4.68 -5.96
(.980) (.960) (.306) (.107) (.835) (.767) (.329) (.188)
DF -2.86 -3.43 -2.86 -343 -2.86 -343 -2.86 -3.43
(.050) (.010) (.050) (.010) (.050) (.010) (.050) (.010)
NOTE: The sampiing distribution of the normalized bias statistic, Z.,,(/). is against the i is that the p is stati Y
around a constant mean. The table is based on 10,000 repiications of an ARIMA(O, 1, l)proeess e = Yios) =& = Oy (8 =

T), with¢ = .8 and T = 1,000 or 10,000. The Phillips—Perron comections use Equations (5), (6), and (7) for / lags of the residual

autocorrelations. For T = 1,000, /, = 7and /y; = 21;for T = 10,000, /s = 12 and /s = 37. The percentage of rejections using the
DF critical value is in parentheses under each of the fractiles (i.e., for a 5%-level test, this should be .05 if the approximation to the DF

distribution is accurate). The last row, labeled DF, the

If the unit-root estimate is equal to its true value, p,
= 1, the residual autocorrelations should equal —.49
at lag 1 and .0 at the remaining lags. For the data-
generating process used in these simulations, a rela-
tively low number of lags should work best. Thus Tables
9 and 10 show values of the Phillips—Perron tests based
onl! =0,1,2, 3,4, [, and /5, where I = 0 is the
original Dickey-Fuller statistic.

Phillips and Perron (1988) suggested two strategies
for estimating the variances s? and s%,. The technique
used in the preceding simulations is based on residuals
from the estimate of (4), which is the procedure rec-
ommended in their first draft. The alternative proce-
dure is to assume that the autoregressive parameter p,
equals 1 and use the differences, DY,, to calculate the
variance estimates (a procedure also discussed by Phil-
lips and Perron). This distinction is important because
the autocorrelations of the residuals are not similar to
the autocorrelations of the differences when 0 = .8.
Because the estimate of the unit root j, is well below
one in most cases when ¢ = .8, the residual autocor-
relation at lag 1 averages —.367 when T = 1,000, and
the remaining autocorrelations are positive and decay
very slowly (from .071 at lag 2 to .060 at lag 21). This
is typical of a mixed ARIMA(1, 0, 2) process with an
autoregressive coefficient close to unity. For an
ARIMAC(1, 0, 2) model, the kth autocorrelation p, =
p20*2, where p, is the autocorrelation at lag k and ¢
is the autoregressive parameter. Based on the estimates

= .071 and r;; = .060, the implied value of ¢ is .99.

YT

ic DF critical values and rejection percentages.

These positive residual autocorrelations cause the Phil-
lips—Perron tests to grow farther from the Dickey~-Fuller
distribution as more lags are included. Thus the two-
step procedure recommended by Phillips and Perron
seems to have an important flaw—the estimate of the
autoregressive root j, in (4) is biased substantially be-
low 1 when 0 = .8, so the residuals from (4) retain
much of the nonstationarity from the original series.

In contrast, the average autocorrelation of the dif-
ferences equals —.486 at lag 1 and .000 at all remaining
lags when T = 1,000. Nevertheless, the performance
of the Phillips-Perron tests based on differences in Ta-
bles 9 and 10 seems to improve as the number of lags
increases. This is probably due to the Newey—West
weighting scheme, used to calculate the variance esti-
mate s}, in (6), that gives greater weight to the auto-
correlation at lag 1 as the number of lags increases.

The results for samples of 10,000 observations in Ta-
bles 9 and 10 are closer to the Dickey—Fuller distri-
bution than the results for samples of 1,000 observa-
tions, but the rate of convergence seems very slow.
Finally, with samples of T = 10,000, using residuals to
calculate the variance estimates, the Phillips—Perron test
based on I/, = 12 lags exhibits unusual behavior. For
example, the .05 critical values for Z,,(/) is above the
Dickey-Fuller critical value, although the .01 critical
value is below the Dickey-Fuller value.

Based on the results in Tables 9 and 10, the size of
the Phillips—Perron tests is better specified when using
differences to calculate the variance estimates if 0 =
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.8, although the Said-Dickey tests are closer to the
Dickey-Fuller distribution. One should be cautious,
however, before concluding that one should always use
differences in the Phillips-Perron test. In discussing the
multivariate analog to the Phillips—Perron test, Z,.(/),
Stock and Watson (1988) showed that this test is not
consistent versus some stationary alternative hypoth-
eses when using the differences to calculate the variance
estimates. Thus the Phillips—Perron tests using residuals
behave poorly under the null hypothesis, but the tests
based on the differences behave poorly under some
plausible alternative hypotheses.

4.. SUMMARY

The ARIMA(1, 0, 1) process used in the Monte Carlo
experiments approaches a stationary random process as
the MA parameter 6 approaches the autoregressive pa-
rameter p,. For cases in which p, is close to or equal
to 1 and 0 is less than but close to p,, the autocorre-
lations of the data are small positive numbers that decay
very slowly. These cases occur frequently in economic
data. For example, Nelson and Schwert (1977) found that
the monthly consumer price index (CPI) inflation rate
for the United States follows such a process; Huber-
man and Schwert (1985) found that the monthly Israeli
CPI inflation rate follows such a process; and French,
Schwert, and Stambaugh (1987) found that the log of
monthly stock-market volatility follows such a process.
Schwert (1987) applied the unit-root tests discussed in
this article to 17 important U.S. macroeconomic time
series and concluded that many of the tests would falsely
reject the unit-root hypothesis using the Dickey—-Fuller
critical values. In such cases, the common argument
that the unit root in the autoregressive part of the model
dominates the asymptotic behavior of the process is
misleading for large finite samples.

The simulations in this article show that the tests for
unit roots developed by Dickey and Fuller (1979, 1981)
are sensitive to the assumption that the data are gen-
erated by a pure AR process. When the underlying
process contains an MA component, the distribution of
the unit-root test statistics can be far different from the
distributions reported by Dickey and Fuller. Moreover,
the tests recently suggested by Said and Dickey (1984,
1985), Phillips (1987), and Phillips and Perron (in press)
to correct the model-misspecification problem do not
seem to work well when the MA parameter is large. In
particular, the tests proposed by Phillips and Perron do
not come close to their asymptotic distribution for sam-
ples as large as 10,000 observations. The best test, in
the sense that it has size close to its nominal level for
all values for the MA parameter 8, is the Said and
Dickey (1984) high-order autoregressive ¢ test for the
unit root.

Given the many reasons to believe that economic
time series contain MA components, these simulation

experiments provide warning against the broad appli-
cation of unit-root tests in economics. It is important
to consider the correct specification of the ARIMA
process before testing for the presence of a unit root in
the autoregressive polynomial.
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