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Bivariate time series models have been used extensively
to analyze the relationship between pairs of economic
variables. Various tests have been proposed that can be
used to examine the adequacy of specific models. The
empirical literature is noteworthy for the frequency with
which different authors using different tests reach differ-
ent conclusions, and for the apparent lack of evidence
for certain relationships strongly suggested by economic
theory. The objective of this study is to use Monte Carlo
methods to examine the size and power of alternative
tests, and to relate these findings to the analytical struc-
ture of the tests.
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1. INTRODUCTION

Numerous empirical studies have appeared in recent
years that purport to test for the existence and direction
of ‘‘causal’’ relationships among monetary, macroecon-
omic, and financial variables. Notable in this literature
is the frequency with which different investigators ex-
amining the same basic data report contradictory results.
Feige and Pearce (1979) find no evidence of causal re-
lationships between the supply of money and aggregate
nominal income, in strong contradiction to the conclu-
sions reached earlier by Sims (1972). Pierce (1977a) stud-
ies relationships among pairs of various monetary, finan-
cial, and macroeconomic variables and finds little evidence
of causation, even in cases such as growth of demand
deposits and the yield on Treasury bills, which theory
suggests are importantly related. Similarly puzzling is
that Feige and Pearce report no significant relationship
between growth of the money supply and the inflation
rate.
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Since different investigators use different testing pro-
cedures, the explanations for these inconsistencies pre-
sumably lie in the relative size and power of the alter-
native test statistics. This question has been actively
debated in recent years. Sargent (1976, p. 233), Pierce
and Haugh (1977), Pierce (1977a,b), Sims (1977), Hsiao
(1979, 1981), Wallis (1977), Schwert (1979), and Jacobs,
Leamer, and Ward (1979) discuss the relative merits of
different tests, but the differences among these tests have
not been quantified. Since this article was first written,
we have seen articles by Geweke, Meese, and Dent
(1979), Guilkey and Salemi (1979), and Geweke (1981a,b),
who are examining related issues.

The objective of this paper is to investigate the sam-
pling distributions of alternative tests in the context of
a bivariate time series model that includes independence,
one-way causation, and feedback as special cases. We
are aware that the concept of causation developed by
Granger (1969) is a purely predictive one and may not in
some circumstances coincide with the concept of caus-
ation discussed by philosophers of science. Zellner (1979)
and Nelson (1979) discuss this distinction in detail.
Nevertheless, the Granger concept of causality does cor-
respond to restrictions on bivariate time series models
that are often of interest to economists.

2. ANALYTICAL RELATIONSHIPS AMONG
ALTERNATIVE TESTS

A time series {X,} is said to ‘‘cause’’ another time series
{Y,} in the sense defined by Granger (1969) if past values
of X are useful in predicting Y, when the past values of
Y have been taken into account. The definition is sym-
metric for Y causing X, and feedback is said to exist if
causality is present in both directions.

The bivariate time series model
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is used to generate data in the simulation experiments,
where u;, and u,, are serially uncorrelated pseudorandom
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normal deviates with cov(u,,, u,,) = 0.! The parameters
Y12 and v,, are varied across our experiments to create
different bivariate relationships between Y and X. By
choosing v, nonzero, we simulate a situation in which
X helps to predict Y; a nonzero v,, implies that Y helps
to predict X; and by setting v,, and v,, both equal to
zero, Y and X are independent. This is easy to see in
terms of the reduced form for (2.1)

Yol _|én ¢n Y. Vi
[Xx] - [¢21 ¢zz] [X,_l] + [vm], (2.2)

which is a first-order vector autoregression. The reduced
form coefficients ¢,, and ¢,, indicate whether lagged
values of Y and X are useful for improving the predictions
of X and Y, respectively.

The tests discussed in the remainder of this section use
restrictions implied by the various bivariate structures
for (a) the reduced form (2.2); (b) the univariate autore-
gressive-moving average (ARMA) representations of Y
and X; (c) the cross-correlations between the residuals
from the univariate ARMA representations for Y and X;
(d) the two-sided distributed lag regressions between
univariate ARMA residuals; and (¢) the two-sided dis-
tributed lag regressions between Y and X. All of these
tests have been used to determine relationships between
pairs of economic time series variables.

21 Reduced-Form Tests

To test the null hypothesis of independence, we com-
pare the values of the log likelihood function for the un-
constrained reduced form (2.2) with that of the con-
strained reduced form implied by independence, where
b2 = b1 = cov(vy,, va,) = 0. The coefficients are es-
timated by least squares and the likelihood is evaluated
using estimated variances and covariances of the reduced
form residuals in the unconstrained case. Two times the
difference in these log likelihoods should be approxi-
mately chi square with three degrees of freedom (df) if
the null hypothesis of independence is true. Using pre-
liminary simulation results, we multiply the likelihood
ratio test by (T — K)/T, where T is the sample size and
K is the number of parameters estimated in the uncon-
strained model.

To test the null hypothesis that X does not help predict
Y, we regress Y, on Y,_; and X,_, by least squares and
examine the ¢ ratio for ¢;> (which will not have a ¢ dis-
tribution in small samples). Similarly, we examine the ¢
ratio for ¢ to test the null hypothesis that Y does not
help predict X.

! The pseudorandom normal deviates are generated by Marsaglia’s
rectangular-wedge-tail method, incorporated in the program RANORM,
obtained from the University of Chicago Computation Center. Kind-
erman and Ramage (1976) discuss some attractive properties of gen-
erators such as this. As an expedient device, it is assumed that ¥, =
Xo = 0in (2.1); then T + 20 observations for { ¥,} and {X,} are computed
so that the last T observations can be used in the tests. This procedure
mitigates the arbitrary assumption about the initial conditions, ¥, and
Xo.

Joumnal of the American Statistical Association, March 1982

In applications, there has been a tendency to include
a large number of parameters in bivariate autoregressive
tests of “‘causality’’ to assure that there are not important
omitted lags of either variable. To represent this tendency
toward profligately parameterized models, we also con-
duct tests based on the assumption of a sixth-order vector
autoregressive process. In this case, the likelihood ratio
test statistic will be approximately chi square with 13 df.

To test the hypothesis that X does not help predict Y,
we use the F test for the significance of the coefficients
of lagged X when Y, is the regressand; similarly, we use
the F test for the coefficients of lagged Y when X, is the
regressand to test the hypothesis that Y does not help
predict X. The resulting tests will be less powerful than
those based on the exact reduced form.

2.2 Bivariate Structure and ARMA
Representations

Restrictions on the orders and parameters of the
ARMA representations of {Y,} and {X,} are implied by
different parameter values for (2.1). It is straightforward
to show that when there is feedback, both Y and X are
ARMA (2, 1) processes with identical autoregressive
coefficients (see, for example, Wallis 1977)

[1 —(d11 + d22)L — (d12d21 — d11d22)L*] Y,

= [1 - 9yll]an (23)

[1 —(d11 + d2)L — (d12d21 — dr1d22)L?] X,

= [1 — 6:Lb,,

where a, and b, are the univariate ‘‘innovations’’ for Y,
and X,, respectively. If ¢, is zero, Y follows an AR(1)
process; if &, is zero, X follows an AR(1) process. There-
fore, if X helps predict Y, an ARMA(2,1) model should
fit the data for Y better than does an AR(1) model, and
if Y helps predict X, an ARMA(2,1) model is implied for
X.

Zellner and Palm (1974) suggest that a comparison of
the AR(1) model versus the ARMA(2,1) model can be
used to determine whether there is a predictive relation-
ship between Y and X. Wallis (1977) suggests that a test
for feedback can be based on the bivariate ARMA model
in (2.3); the likelihood for the restricted model can be
compared with the likelihood for the unrestricted bivar-
iate ARMA(2,1) model to test the hypothesis that there
is feedback between Y and X. Unfortunately, in both of
these tests the unrestricted ARMA(2,1) model does not
have identified parameters under the null hypothesis that
Y and X are unrelated, so the information matrix will be
singular. Thus, there is reason to doubt that tests based
on univariate or multivariate ARMA models can be used
to test for predictive relationships.

2.3 Cross-Correlation of Univariate ARMA
Residuals

It is straightforward to show that the univariate ARMA
innovations in (2.3), a; and b,, will be cross-correlated
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when there is a predictive relationship between Y and X.
As Pierce and Haugh (1977) show, when cov (a,, b,_;)
# 0 for some k > 0, then X helps predict Y, since q, is
the part of Y, not predicted by past ¥’s. Similarly, when
cov (a;—x, b,) # 0 for some k > 0 then Y helps predict
X. In the case of nonzero v;, and v,; all of these covar-
iances are nonzero and feedback is present. Finally, in
the case where v, = vy,; = 0, all of these covariances
are zero, which confirms the independence of Y and X.

In our experiments, we use values of vy, equal to .5
and 1.0 when vy,, = 0, implying values of 6, in (2.3) equal
to .382 and .234, respectively. The correlation between
a,and b, _, is (.437) - (.382)* for k = 0 when v,, is .5, and
(.685) - (.234)* when v,, is 1.0. Note that the cross-cor-
relations decay geometrically at a rate of 6, in this case,
so that evidence of the predictive relation is concentrated
at the first lag.

If the innovations {a,} and {b,} could be observed or
calculated from {Y,} and {X,}, then tests of association
could be based on sample cross-correlations between the
innovations. In particular, sample cross-correlations
between independent random series are asymptotically
normal with mean zero and standard deviation
(T — | k| )~ "2 for lag k, and they are independent across
lags (see Bartlett 1955 or Hannan 1970). Further, the same
result holds for random series with some nonzero cross-
correlations, as long as the true cross-correlations are
zero in the range of lags being considered. Therefore, to
test the null hypothesis that ¥ and X are independent,
one would calculate the statistic

K>

2 (T = |k|)rak?,

(2.4)

where r,,(k) denotes the sample correlation between a,
and b,.,, which would be approximately distributed as
x>(K; + K, + 1) under the null hypothesis. Similarly,
to test the null hypothesis that X does not help predict
Y one would calculate the statistic in (2.4) for one side
of the cross-correlation function.

Operationally, the innovations are not available since
the parameters of the univariate ARMA representations
are unknown; instead, we use residuals from fitted
ARMA models. Haugh (1972, 1976) has shown that the
result in (2.4) continues to hold when residuals are used
instead of innovations if Y and X are independent; there-
fore, the test for independence remains valid. Haugh sug-
gests a formula that appears to be different from (2.4).
The difference arises from the definition of the estimator
of the cross-correlation coefficient at lag k. Thus, the
statistic in (2.4) is equivalent to Haugh’s test. However,
Durbin’s (1970) analysis of the distribution of test statis-
tics based on residuals implies that when Y and X are not
independent, the variance of the statistic in (2.4) is
smaller than the variance of x2(K; + K, + 1). Thus, if
X helps predict Y, the one-sided test as to whether Y
helps predict X (i.e., K; = —1, K, > 0) will have an
overstated significance level. Similarly, the power of such
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tests is reduced because of the Durbin problem. Further
discussion of this fact is found in Pierce (1977a,b), Sims
(1977), and Pierce and Haugh (1977), but as far as we
know the magnitude of this phenomenon has not been
examined previously.

In examining the results of our experiments, it will be
interesting to see the empirical significance levels and
power of the residual cross-correlation tests in situations
where Y and X are not independent. We will also be
interested in comparing tests based on true innovations
as opposed to fitted residuals.

The test statistics we calculate use six leads or six lags
in (2.4), since a generous number of lags are typically
included when these tests are used in practical situations.
The innovations are calculated recursively assuming that
ap = by = 0. The residuals are calculated two different
ways: (a) the appropriate ARMA model (either ARMA(2,1)
or AR(1)) is estimated for both ¥ and X; and (b) an AR(6)
model is estimated for both Y and X, since high-order
autoregressive models are often used to approximate gen-
eral ARMA models.

2.4 Regressions Between Univariate ARMA
Residuals

Since both {a,} and {b,} are nonautocorrelated, though
in general they are cross-correlated, the regression re-
lations between them are of the form

2 "lllkb!—k + €ars

k= —o

a;

(2.5)

- -]
2 Yol — i + €py,

k= —o

b,

where Yy = pap(—K) - 0./04, Yok = pap(k) - o/, Pas(k)
is the correlation between q, and b, , ,, and where ¢, and
e, will be autocorrelated in general. Thus, the analysis
of the cross-correlation functions in the previous section
implies analogous results for the dynamic regressions in
2.5).

Under the hypothesis of independence, e, and e, will
be nonautocorrelated so that a test of independence can
be based on the F statistic for significance of either of
the regressions in (2.5). Under the null hypothesis of one-
way predictive ability, say from X to Y, the F statistic
for the one-sided regressions of a, on future 4’s or b, on
past a’s can be used. Therefore, tests analogous to the
cross-correlation tests can be based on simple F statistics
from the analogous regressions, and these tests are exact,
not large-sample approximations.

When ARMA residuals are used in place of true in-
novations, the tests are no longer exact and the impli-
cations of Durbin’s analysis are again relevant. Further
discussion of these regression tests can be found in Gran-
ger (1973) and Schwert (1979). We implement these tests
using six lags or leads, and we examine tests using the
true innovations, AR(1) or ARMA(2,1) residuals, and
AR(6) residuals.
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2.5 Two-Sided Regression Tests
Sims (1972) proves that the regression of Y, on past,
current, and future values of X

> BeXi—k + My,

k= —o

Y, = (2.6)
will not include the future values of X if and only if Y

does not help predict X. In our experiments with two-
sided regression tests we use six leads and lags

6
o+ 2 BuXi—k + Miss

k=—6

Y, (2.7a)

6

oy + 2 B2k Yk + M2
k=—6

X, . (2.7b)

To test the hypothesis of independence, we calculate the
F statistic for the significance of the regression in (2.7a),
which is distributed as F (13, T — 26) under the null hy-
pothesis when the regression disturbances are serially
independent. To test the hypothesis that Y does not help
predict X, we compare the F statistic for the significance
of the six lead coefficients in (2.7a), which is distributed
as F (6, T — 26) under the null hypothesis when the
regression disturbances are serially independent. Simi-
larly, the test that X does not help predict Y is based on
the six lead coefficients in (2.7b).

It is important to note that the disturbances in (2.7a)
or (2.7b) will generally be serially correlated. Under the
null hypothesis that Y does not help predict X, the error
term in (2.7a) will be first-order autoregressive with a
coefficient of .5, as can be seen from the structural equa-
tion (2.1)

Yi2 1
= + :
- snX T a-spi

Thus, the disturbance m,, in (2.7a) follows an AR(1) proc-
ess when Y and X are independent, or when there is a
one-way predictive relation from X to Y. When feedback
is present, the autocorrelation structure of n;, is much
more complicated.

To correct for serial correlation in the disturbances of
(2.7a) and (2.7b), we use a one-step second-order Coch-
rane-Orcutt (1949) procedure. An AR(2) model is esti-
mated for the residuals; then the data for Y and X are
transformed using the AR(2) filter; finally, the regression
model is reestimated using the transformed data. The
tests are based on the final regressions. This procedure
yields asymptotically valid tests in our experiments, al-
though it will not correct for the serial correlation of the
disturbances when there is feedback between Y and X.
Because of this serial correlation correction, the df in the
denominator of the F statistics are T — 28 instead of T
— 26.

3. SMALL-SAMPLE PROPERTIES OF ALTERNATIVE
TESTS

Our sampling experiments are based on data generated
by the five hypothetical structures depicted in Table 1

Y, (2.8)
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Table 1. Hypothetical Structures Used in Sampling
Experiments

Structural
Coefficients
Equation (2.1)

Reduced-Form Coefficients
Equation (2.2)

Structure  y12 Y21 b1 b12 b2z b21
| 0 0 5 0 .5 0
Il 5 0 5 .25 5 0
il 1.0 0 5 5 5 0
\% .37 37 .58 .21 .58 .21
\ .85 .085 .54 .46 .54 .046

that correspond to various values of vy;, and v,, selected
to provide examples of independence, one-way predictive
relations, and feedback.

Structure I corresponds to the situation in which X and
Y are independent. Structures II and III represent cases
where X helps predict Y with different strengths. Struc-
tures IV and V are feedback situations with the strength
being symmetric in IV, while only weak feedback from
Y to X is present in V. Each of these structures is used
to generate Y and X series of lengths 50, 100, and 200
observations.

31 Tests of Independence Versus Feedback

When the null hypothesis is that Y and X are indepen-
dent, the investigator will presumably employ test statis-
tics that are two-sided, so that a predictive relation in
either direction will lead to rejection of the null hypoth-
esis. Table 2 presents the frequencies of rejection in these
tests when conducted at a presumed 5 percent signifi-
cance level over 500 replications. If the true probability
of rejection is 5 percent, then these empirical frequencies
have a standard error of about 1 percent.? To increase
the comparability of the experiments across different
structures and different sample sizes, the same seed is
used to start the normal random number generator for all
of the experiments. However, this also means that the
results for different experiments are not independent.

Structure I allows us to estimate the size of the various
tests. The reduced-form tests, based on the large-sample
distribution of the likelihood ratio statistic, reject about
5 percent of the time when the df correction is used.
However, there seems to be a tendency for the rejection
frequencies to rise as the sample size increases. When
the standard likelihood ratio test statistic is used without
the df adjustment, the reduced-form tests reject far too
frequently. This is an especially serious problem for the
over-parameterized bivariate AR(6) model with a sample
size of 50, which rejects 25.2 percent of the time when
Y and X are independent.

2 Every trial is an independent realization from a binomial distribution
with a probability of rejection equal to p. The proportion of rejections,
p is an unbiased estimator of p, and the variance of the sample pro-
portion is p(1 — p)/500. Thus, for p = .05, the standard error of p is
0.00975.
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Table 2. Two-Sided Tests (percent rejections at the 5% level)

Structures
1 (X,Y independent) IHxX—Y) Hnnx—-Y) V(X< Y) V(X Y)
Sample Size Sample Size Sample Size Sample Size Sample Size

Tests Based on 50 100 200 50 50 50 50
Reduced Form

Bivariate AR(1) 54 62 68 85.6 100.0 100.0 100.0

Bivariate AR(6) 34 36 4.2 21.2 89.6 73.4 89.8
Two-Sided Regressions

AR(2) Cochrane-Orcutt 170 104 6.2 > b b >
ARMA Residual Cross Correlations

True Innovations 5.4 50 44 47.0 96.8 81.4 95.8

ARMA(2,1) Residuals 46 50 38 38.6 95.2 79.8 93.6

AR(6) Residuals 38 42 36 22.8 89.8 68.4 89.8
ARMA Residual Regressions

True Innovations 6.0 6.0 5.0 33.0 87.0 63.8 85.2

ARMA(2,1) Residuals 54 58 52 28.2 84.6 63.6 82.2

AR(6) Residuals 52 48 46 246 80.4 55.8 78.4

NOTE: These are tests of whether Y and X are independent at all leads and lags. See Table | for a description of the structures that are the basis for the experimental design. Briefly,
Structure | represents independence, Structures Il and Ill represent X helping to predict Y at different strengths, and Structures IV and V represent feedback between X and Y. Thus,
Structure | provides estimates of size and Structures 1I-V provide estimates of power. The different tests are described in detail in Section 2 of the article. The rejection frequencies
for Structures I1-V with sample sizes 100 and 200 are all close to 100, so they are not shown.

** These entries are omitted because the size of this test seems to be incorrect.

The two-sided regression tests using the second-order
Cochrane-Orcutt procedure to correct for residual auto-
correlation rejects far too frequently for samples of size
50 or 100 observations, but the size of the test is ap-
proximately correct for a sample size of 200.

The estimated sizes of the residual cross-correlation
tests are within 1.5 standard errors of 5 percent for all
three sample sizes, although there is some tendency for
the frequency of rejection to decrease as the sample size
increases. The estimated sizes of the residual regression
tests are even closer to 5 percent. This is not surprising
since the regression test based on the true innovations
is the only test among the set we are analyzing that is
exact in finite samples.

The results for Structures II through V give estimates
of power for tests that have the correct size under various
alternative hypotheses. Since the rejection frequencies
are all close to 100 percent for sample sizes of 100 and
200, these results are not shown in Table 2. The largest
contrasts in Table 2 are seen in the experiment with Struc-
ture II and 50 observations. Recall that in Structure II
X helps predict Y, but the relationship is not as strong as
in Structure III. The reduced form based on the bivariate
AR(1) specification is the exact reduced-form vector
ARMA representation for the data we use in our exper-
iments; therefore, it is not surprising that this test offers
the highest power. The test based on the overspecified
bivariate AR(6) representation does not reject as often
as the test based on the correct bivariate AR(1) model.

The ARMA residual cross-correlation tests seem to
offer greater power than do the comparable ARMA re-
sidual regression tests. As expected, the tests based on
the true innovations have more power than the tests based
on the AR(1) or ARMA(2,1) residuals, reflecting the fact
that the ARMA parameters must be estimated in order

to perform the latter test. Similarly, the tests based on
the AR(1) or ARMA(2,1) residuals are more powerful
than those based on the AR(6) residuals. The ARMA
residual tests seem to be more powerful than the bivariate
AR(6) reduced-form test when the structure of the ARMA
model is known, even if the ARMA parameters must be
estimated.

The rejection frequencies for the two-sided regression
tests are not reported for Structures I through V, because
it is apparent that the nominal size of this test is incorrect
when smaller sample sizes are available.

Thus, among the tests which have the correct 5 percent
significance level, the exact reduced-form test is most
powerful, followed by the ARMA residual cross-corre-
lation and regression tests and the overparameterized
reduced-form test, with the ordering of the latter tests
depending on the true parameters.

3.2 Tests of One-Way Predictive Relations

Part A of Table 3 presents rejection frequencies for
tests of the null hypothesis that X does not help predict
Y against the alternative that X does help predict Y. The
reduced-form tests are based on the ¢ ratio for lagged X
in the regression of Y, on one lag of Y and one lag of X,
or the F ratio for all six lags of X in regressions that
include six lags of Y. Two-sided regression tests are based
on the joint significance of all six lead coefficients in a
regression of X, on current, six lags, and six leading val-
ues of Y. The ARMA residual tests are based on cross-
correlations and regressions of Y innovations or residuals
on six past innovations or residuals for X. Part B of Table
3 contains rejection frequencies for comparable tests of
the hypothesis that Y does not help predict X.

In Part A of Table 3, the results for Structure I provide
estimates of the size of the tests. In Part B, Structures
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Table 3. Tests of One-Way Predictive Relations (percent rejections at the 5% level)

Structures
| (X,Y independent) nNxX-1Y) Hnx-Y) V(X Y) VIXe Y)
Sample Size Sample Size Sample Size Sample Size Sample Size
Tests Based on 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200
Part A: Tests of X Predicting Y

Reduced Form

One Lag 7.0 6.2 6.0 322 576 86.8 46.8 756 950 216 39.8 70.8 454 73.4 942

Six Lags 7.0 5.6 5.0 140 260 534 158 350 738 122 196 362 158 352 73.6
Two-Sided Regressions

AR(2) Cochrane-Orcutt 9.8 5.6 46 * 268 518 ** 340 716 **  18.2 338 * 338 71.2
ARMA Residual Cross Correlations

True Innovations 3.2 4.6 4.8 8.0 18.0 35.8 6.0 142 294 46 80 152 56 13.2 27.2

ARMA(2,1) Residuals 3.2 4.6 4.4 48 116 328 20 5.0 184 28 40 90 20 42 168

AR(6) Residuals 2.6 3.6 4.0 38 116 284 24 32 134 14 28 4.0 22 32 118
ARMA Residual Regressions

True Innovations 6.2 4.8 5.6 8.6 18.0 37.6 70 13.6 31.0 60 76 154 6.6 13.0 27.8

ARMA(2,1) Residuals 5.8 4.6 5.4 6.0 144 344 42 7.0 220 34 52 94 38 74 184

AR(6) Residuals 5.8 4.8 4.2 58 13.4 288 30 36 144 26 26 46 30 34 128

Part B: Tests of Y Predicting X

Reduced Form

One Lag 6.4 5.8 5.0 68 6.0 46 80 66 62 222 412 716 64 80 128

Six Lags 8.2 5.8 5.6 58 7.8 54 58 64 6.6 88 17.8 38.6 66 62 76
Two-Sided Regressions

AR(2) Cochrane-Orcutt 9.6 7.6 4.6 98 84 6.0 86 68 638 * 19.0 38.8 b 78 76
ARMA Residual Cross Correlations

True Innovations 4.2 4.2 3.8 44 6.2 3.2 40 68 44 56 102 150 38 7.0 46

ARMA(2,1) Residuals
AR(6) Residuals

ARMA Residual Regressions

46 42 40
3.2

True Innovations 7.4 5.8 4.8 5.2
ARMA(2,1) Residuals 7.6 5.4 4.6 5.8
AR(6) Residuals 6.0 5.2 5.6 3.2

36 38
44 36 14 20

7.0
5.4
26

30 40 34 22 24 52 108 24 16 20

08 02 04 02 * o~ .o

40 60 76 54 60 98 160 58 70 52
52 74 38 36 40 70 122 36 16 30
18 06 04 02 *~ = o w

NOTE: Part A contains tests of whether lagged X improves the prediction of Y, given lagged values of Y. Part B contains tests of whether lagged Y improves the prediction of X, given
lagged values of X. See Table | for a description of the structures which are the basis for the experimental design. Briefly, Structure | represents independence, Structures Il and
lil represent X predicting Y at different strengths, and Structures IV and V represent feedback between X and Y. Thus, for Part A, Structure | provides estimates of size and Structures
II-V provide estimates of power; for Part B, Structures I-lll provide estimates of size and Structures IV and V provide estimates of power. The different tests are described in detail

in Section 2 of the paper.
** These entries are omitted because the size of the test appears to be incorrect.

I, II, and III provide estimates of size, since these are
all cases where Y does not help predict X. Structures 11
and III provide an opportunity to examine the Durbin
problem with ARMA residual tests, because X helps to
predict Y in these cases. In Structure I, where Y and X
are independent, most of the tests have rejection fre-
quencies within two standard deviations of 5 percent,
except for the two-sided regression test for a sample size
of 50. There are a few cases where a particular test rejects
too often or too infrequently in one part of Table 3, but
the comparable test in the other part of the Table is close
to the nominal S percent significance level. The rejection
frequencies seem to be slightly low for the residual cross-
correlation tests, but none of the deviations is more than
two standard deviations below the nominal 5 percent sig-
nificance level.

In Part B of Table 3, the results for Structures II and
III appear to be similar to the results for Structure I for
the reduced-form tests, the two-sided regression tests,
and for the ARMA tests based on the true innovations.

These are all tests that should not be affected by the fact
that X helps predict Y. On the other hand, most of the
ARMA residual tests appear to be affected by the Durbin
problem, particularly when the AR(6) model is used to
estimate the residuals. In Structure III, where the pre-
dictive relation:between Y and X is strongest, the rejec-
tion frequencies for the AR(6) residual cross-correlation
and regression tests are less than 1 percent for all sample
sizes. Interestingly, the Durbin problem does not seem
to be as serious for the residual regression tests when the
correct ARMA(2,1) model is used to estimate the resid-
uals; in Structure II all of the rejection frequencies are
slightly above 5 percent and in Structure III the rejection
frequencies are not more than 1.5 standard deviations
lower than the nominal 5 percent significance level. Thus,
it seems that the Durbin problem does not seriously affect
the size of the residual regression tests when the correct
form of the ARMA model is known.

The relative power of the tests is quite consistent across
experiments with Structures II through V in Part A of
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Table 3, which are all cases in which X helps predict Y.
In particular, there is little to choose between the ARMA
residual tests, neither of which is as powerful as the Coch-
rane-Orcutt version of the two-sided regression test or
the reduced-form tests. The power of the two-sided
regression Cochrane-Orcutt test is always comparable to
that of the six lag reduced-form test, but both are dom-
inated by the one lag reduced-form test that estimates the
correct reduced form

There are several interesting aspects to the ARMA re-
sidual tests. First, the rejection frequencies are higher for
Structure II than for III, even though past X are more
frequently significant in predicting Y, in Structure III.
The explanation for this result is that the lagged residual
cross correlations for Structure II are larger and more
persistent than for III. Second, the Durbin problem is
evident in the results for Structures IV and V, where
there is feedback between Y and X. The rejection fre-
quencies for the tests based on residuals are much lower
than for the tests based on true innovations. In particular,
when there is strong feedback in Structure IV, the tests
based on AR(6) residuals never reject more than five
percent of the time, which is the size of the test. Never-
theless, when the correct ARMA(2,1) model is used to
estimate the residuals, the rejection frequencies are sig-
nificantly greater than five percent for a sample size of
200 in both Structures IV and V.

In Part'B of Table 3, Structures IV and V represent
cases where the power of the tests can be compared under
strong (IV) and weak (V) feedback. The most powerful
test is the one-lag reduced-form test; in fact, this is the
only test with a rejection frequency more than three stan-
dard errors greater than its apparent significance level for
the weak feedback case (for example, 12.8 percent re-
jections with a sample size of 200). The power of the six-
lag reduced-form test and the two-sided regression Coch-
rane-Orcutt test are comparable in both feedback cases,
given that the significance level of the latter test appears
to be too high for small sample sizes. However, neither
of these tests appears to have power much greater than
the level of the test in the weak feedback case.

Rejection frequencies for the ARMA residual tests,
whether based on true innovations or on residuals from
the fitted ARMA(2,1) model, rise above the S percent
significance level when feedback is strong and the sample
size is 200. However, the same tests based on the AR(6)
residuals reject less frequently than the nominal signifi-
cance level even in the case of strong feedback, again
reflecting the seriousness of the Durbin problem.

4. CONCLUSIONS

As with any Monte Carlo study, our conclusions must
be tempered by the limitations of the experimental design.
For example, it is worth noting that tests based on the
regression of one variable on past values of both variables
are reduced-form tests only when, as in our case, the
reduced-form vector process is purely autoregressive. In
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another situation, the correct reduced form might well
include moving averages in past values of the reduced-
form disturbance, perhaps the result of moving average
disturbances in underlying structural equations. The cor-
rect reduced form would still be discoverable from the
data alone, and tests for predictive relations would in-
volve off-diagonal moving average as well as autoregres-
sive parameters. If an investigator fitted a bivariate AR(1)
model in such a case it would not yield reduced-form
tests as it did in our situation; rather, it would simply be
a misspecification. A high-order bivariate autoregressive
representation could then be viewed as a computationally
convenient, but presumably statistically inefficient, way
of approximating the correct bivariate mixed ARMA
process. Further experimentation to study the conse-
quences of this kind of misspecification on the reduced-
form tests might be worthwhile. Similarly, it would be
interesting to examine the effect of varying number of
lags used to compute all of the test statistics.

The structural system we use in our experiments im-
plies a relatively strong contemporaneous relationship
between the variables, which is why our two-sided tests
in Table 2 appear to be much more powerful than the
one-sided tests in Table 3. It would be interesting to see
how the power of the tests would change if the structural
model implied stronger lagged predictive relations.

Keeping in mind that our results are confined to vari-
ations in one particular system, we regard the evidence
presented in this article as pointing strongly to the fol-
lowing generalizations. (a) The most powerful tests are
those based on the correct reduced-form model for the
variables; (b) power is lost when a test includes estimation
of irrelevant parameters; (c) tests based on cross-corre-
lations or regressions of univariate ARMA residuals are
less powerful than parametric tests based on reduced-
form models, and additional power is lost in having to
rely on residuals from estimated models instead of the
unobserved univariate innovations; (d) as implied by Dur-
bin’s analysis, tests based on residuals tend to have
smaller size and little power in testing for predictive abil-
ity in one direction when predictive ability is present in
the other direction; (e) the two-sided regression tests are
sensitive to correct specification of autocorrelation of the
regression errors, with incorrect specification resulting
in the actual size exceeding the nominal significance
level;? (f) when appropriate correction for residual au-
tocorrelation is made in the two-sided regressions, so the
size of the test is approximately correct, that test is about
as powerful as the over-specified reduced-form test that
includes a comparable number of parameters.

3 Geweke, Meese, and Dent (1979) and Guilkey and Salemi (1979)
have reached similar conclusions. Geweke et al. analyze simulations
of the two-sided regression test using a Hannan-efficient correction for
serially correlated disturbances and a sample size of 100. Thus, it ap-
pears that the problem of correcting for serial correlation is serious for
samples as large as 100 observations when performing the two-sided
regression test.
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We argue that tests of predictive relations based on the
parameters of univariate or multivariate ARMA models
have unknown properties, since the information matrix
of the unrestricted ARMA model is singular under the
null hypothesis that Y and X are independent. The sin-
gularity of the information matrix occurs because there
are redundant roots in the autoregressive and moving
average polynomials of the unrestricted ARMA model
when there is no relationship between the variables.

Our advice to empiricists is to base tests of predictive
relations on reduced-form vector ARMA models, keeping
in mind that the list of variables should include the entire
set of variables that are part of the relevant information
set. This strategy is simple to generalize to situations in
which more than two variables are relevant, whereas the
other procedures discussed in this paper would be diffi-
cult to implement with more than two variables. Further,
regardless of the outcome of tests for possible predictive
relations, the investigator is left with a model that is useful
in forecasting and that exploits the predictive relations
among the variables. The alternative testing procedures
discussed in this article do not generally lead to opera-
tional forecasting models, particularly in cases where the
hypothesis of one-way predictive ability is rejected in
favor of feedback.

[Received April 1979. Revised August 1981.]
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