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It is natural to think of estimating distributed lag models from time
series data since it is in time series contexts that such models arise.
This article studies the estimation of rational distributed lags in the
context of hospital admissions and discharges where a relevant body
of cross-section data exists in the form of lengths-of-stay and appears
to be more appropriate for this purpose than do the available time
series data. The cross-section approach presumably has applications
in many situations in which length-of-stay in the system or its counter-
part can be observed.

1. INTRODUCTION

It is natural to think of estimating the parameters of
distributed lag or transfer function models from time
series data since it is in time series contexts that such
models arise. The present article deals with the estima-
tion of a distributed lag model in a situation where a
relevant body of cross-section data not only exists but
appears to be more appropriate for this purpose than does
the available time series data. In particular, we are con-
cerned with investigating the input-output dynamics
relating hospital admissions to subsequent discharges.
The primary motivation for studying this relationship
is the desire on the part of hospitals to schedule admis-
sions so as to stabilize occupancy or “‘census’ near some
optimal level and at the same time provide patients and
doctors with some lead-time before admission. A model
of the input-output dynamics of a hospital would provide
a framework in which to compute expected discharges
and thus forecast available bed space.

Previous studies of hospital systems have made rather
strong assumptions about the statistical properties of the
admissions sequence and/or the dynamic properties of
the system.! Qur analysis is based on the assumption that
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1In a recent paper, Wiorkowski and McLeod [1971] assume that the number of
patients admitted on successive days is serially independent, a condition which is
unlikely to be met, particularly if admissions are being controlled to stabilize oc-
cupancy as the authors assume. The assumption of serially independent admissions
is employed by Newell [1967] and Pike, Proctor and Wyllie [1963] in analysis of
emergency admissions. These authors require, however, that admissions follow a
Poisson distribution. Even emergency admissions are likely to display serial de-
pendence at a lag of seven days, essentially a weekly seasonality. This has been

a hospital may be represented by a linear filter which
transforms the input sequence of admissions into the
output sequence of discharges, that is,

D, = Z?:o ciA i + €ty (1-1>

where D, is the number of patients discharged on day ¢,
A, the number admitted, the ¢; are fixed constants, and
¢, is a disturbance (presumably autocorrelated) which
prevents discharges from being predicted perfectly from
past admissions. The disturbance process is assumed to be
exogenous to the system in the sense that it is not under
the control of the admissions scheduler either directly or
through adjustment of admissions. The nature of the
physical system in question imposes useful restrictions on
the impulse response weights ; namely, each weight must
be positive, since ¢, represents the contribution of admis-
sions during day ¢t — ¢ to current discharges, and the
weights must sum to unity, since all patients are ulti-
mately discharged.

There is, of course, a substantial literature dealing
with the estimation of the ¢; in models such as (1.1) from
time series data when the input sequence is generated
independently of (or is at least uncorrelated with) the
disturbance. It is clear, however, that this requirement
is not likely to be met if the input is being manipulated to
control the output as would be the case in a hospital
setting. If some attempt was being made to control oc-
cupancy during the sample period, then 4, would in
general be correlated with past values of the disturbance
and, if the disturbance is autocorrelated, with current
and future values as well. In view of this it may not be
surprising that attempts to estimate the ¢; from 700 daily
observations were unsuccessful in the sense of leading
to negative estimates of some of the ¢,, most importantly
a large negative weight at lag one day. The results varied

confirmed empirically by the authors for daily emergency admissions at MacNeal
Memorial Hospital. Bithell [1969] has suggested that the length of stay distribu-
tion for hospital patients may be well represented by a Pascal distribution but
does not provide empirical evidence to support that contention. The intuitive
appeal of the Pascal model is that it may be visualized as a chain of simple
Markovian transitions through successive stages of patient care. Unfortunately
from the point of view of simplicity, the empirical results presented in this article
are not favorable to the Pascal model.
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little over a range of methods of estimation which in-
cluded ‘‘prewhitening’”’ of the input series with accom-
panying transformation of the output, truncation of the
lag structure, flexible rational lag structures, and experi-
mentation with various autocorrelation schemes for the
errors suggested by study of the least squares residuals.
Estimates of the ¢; also proved to be remarkably robust
with respect to alternative specifications of the model.?

These results should serve as a word of caution for the
interpretation of distributed lag models in many economic
contexts where ‘“independent” variables may in fact be
instruments of control. An obvious example would be the
many attempts to relate national income to variables,
such as the money supply, which are simultaneously being
manipulated to achieve goals of economic policy.

Fortunately, the impulse response weights of the
hospital system lend themselves to estimation from cross-
section data. This follows from the fact that the ¢; may
be interpreted as expected frequencies of length of stay.
Out of a group of N patients admitted to the hospital on
a given day, the fraction leaving on the same day would
be on average co, after one day ¢, etc. Empirical frequen-
cies of length of stay are therefore estimates of the c;.
Problems of specifying an appropriate lag structure of
rational form and estimating the parameters from cross-
section length-of-stay data are discussed in Section 2.
The remainder of the article reports results obtained
from a sample of about 1,300 patients. Both the time
series and cross-section data used in this study were
obtained from MacNeal Memorial Hospital in Berwyn,
Illinois. MacNeal is a general hospital of about 420 beds
which had been stable with respect to size and average
level of occupancy for several years preceding the data
collection.

2. FITTING DISTRIBUTED LAGS TO
CROSS-SECTION DATA

Consider a random sample of N patients discharged
from the hospital (or N units emerging from any system
of interest) and denote the number staying < days by N..
The individuals appearing in the sample will in general
have been discharged at different points in time; collec-
tively, they represent a cross section of length-of-stay
experiences. This use of the term ‘‘cross section’ should
be distinguished from a common usage which refers to a
set of observations taken at one point in time. Since ¢; is
the probability that an individual patient chosen at
random has stayed ¢ days, the probability of a given
sample is
N

p(sample|c) = [Tizo ¢ (2.1)

The log likelihood, which will be convenient to work
with, is given by

f(c|sample) = 1o Niln (cs).

In practice we need only be concerned with values of the

(2.2)

2 Details of the time series results will be supplied on request by the authors.
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index up to the longest length of stay observed. Maximiz-
ing the log likelihood subject to the constraint 32, ¢,
= 1, it is easy to show that the resulting estimates ¢, are
given by

which are just the sample frequencies of length of stay.

Parsimonious representations of the lag structure will
generate the impulse response weights from a small
number of fundamental parameters. In this article we
assume that the lag structure is of rational form so that
we may write

(Co + ail* + ¢ L% 4 - - )
(a0 + a1t +- - -+ a,L7)

- , (24)
(14 biL! 4+ -+ b,L?)

1 =1,2,---, (longest stay in sample) (2.3)

where L is the lag operator. For rational lag structures
given by (2.4), the parameters to be estimated are
(ag, - -+, a,) and (by, - - -, by). The constraint which requires
the sum of the impulse response weights to be unity is
easily imposed on the distribution by eliminating one
free parameter, say a,, since

c(1l) = a(1)/b(1) =1 (2.5)

implies
a =1+ Z:=1 b; — Zir=1 a;.

Therefore, the likelihood £(a, b |sample) where a denotes
(ay, - - -, a,) and b denotes (by, - - -, b,) is readily evaluated
for given a and b using (2.2) and the set of relations:

(2.6)

Co = Qo
c1 = —bico + a
2.7)
C; = _blcl—l_ cet —bsci——s+aiy /L= 1;"'771
C, = —blci—l - bscz~s; l >r

where ¢; is understood to be zero for ¢ < 0. The inequality
constraints 0 < ¢; < 1 are not readily translated into
restrictions on the rational form parameters. It is clear,
however, that if those constraints are violated in either
direction, evaluation of the log likelihood will fail since
the log of at least one negative number would be required.

Direct solution for the maximum likelihood (ML)
estimates is readily seen to be infeasible due to the non-
linearity of the relationships linking the rational form
parameters to the impulse response weights. Fortunately,
several numerical approaches to the maximization prob-
lem are available. The approach adopted in this article is
based on the Newton-Raphson (N-R) method with a
modification suggested by Vandaele and R. Chowdhury
[6].

Statistical inference in this context can be based on like-
lihood ratio tests, making use of the fact that in “large”
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samples, 2[£(3|sample) — €(31|82 = B3, sample)], where
8; and §, are subvectors of 3 and 83 is fixed, will have a X2
distribution with degrees of freedom equal to the number
of constrained parameters. Generally, the elements of 3
will be the elements of a and b and the primary hypothesis
of interest will be 33 = 0. However, in testing the con-
straints implicit in Pascal distributions, it is convenient
to reparameterize the model in terms of the zeros of b(L).
In addition, large sample standard errors for the parame-
ter estimates can be computed using the fact that the
asymptotic variance of (3) is given by

V(@) = —{E[G]}, (2.8)

where G is the matrix of second derivatives of the log
likelihood. An estimate of V() is therefore given by

V@) = -G, (2.9)

where G is evaluated at the final parameter estimates.

Our experience with standard errors computed from
(2.9) was that they were almost always small relative to
parameter estimates even when the latter were well
within significance bounds as measured by a likelihood
ratio test. Study of the actual shape of the log likelihood
in the region of its maximum indicated that for our data
the departure from a quadratic was substantial, suggest-
ing that the large sample standard errors which are based
on a quadratic approximation to the log likelihood may
not be very accurate. Certainly from the point of view of
operationally meaningful distinctions in the impulse
response weights implied by alternative models, the like-
lihood ratio test proved to be the more useful criterion.

Several practical problems encountered in computation
of estimates may be of general relevance. Most important,
perhaps, is that the outcome of the N-R iterations was
somewhat sensitive to initial guess values for the parame-
ters. Poor guess values often led to infeasible points in the
parameter space, i.e., points implying at least one nega-
tive impulse response weight. The differential used in
numerical computation of derivatives was typically 10—3;
however, progress in iteration was sometimes facilitated
by increasing the differential to 5 X 10~ or decreasing it
to 1043

3. ANALYSIS OF THE LENGTH-OF-STAY DATA

A sample of 1,290 patients was drawn from the dis-
charge records of MacNeal Memorial Hospital for the
year 1971.% The histogram of lengths of stay through 43
days is displayed in Figure A. It is interesting to note
that approximately one percent of those patients stayed
‘“zero” days, i.e., they were discharged on the day of
admission. The most common circumstances of zero day

3 A listing of the program written for the Hewlett-Packard 2000C is available
from the authors,

4 The data were collected in two subsamples, one taking each twentieth patient
in the discharge listing for 1971 and the other taking each fortieth patient. To check
on the randomness of the samples, autocorrelations were computed for both ordered
sequences of observations. The computed autocorrelations were small relative to
the rough standard error N2, The first-order autocorrelation for the larger sample
was —.06 (with standard error .034), and for the smaller sample, .03 (with standard
error .048).
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stays are expiration and therapéutic treatment which
requires only intraday occupancy. The longest stay in the
sample is 63 days, but only about .6 percent of the
patients in the sample stayed more than 37 days.5

A. Histogram of Lengths of Stay—Total Sample

Frequency
/‘I TOTAL SAMPLE
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i
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3

Length of stay—days

The most important characteristic of the frequency
distribution from the viewpoint of modeling is the con-
spicuous hump at 2, 3 and 4 days and the sharp drop at
5 days after which the frequencies decline at a fairly
steady rate. A rational lag structure which is consistent
with that shape is

¢(L) = (@ + a1l + - -+ + asL5) /(1 + biL).

Parameters a4, - -

3.1)

-, a5 allow the hump to take form since

co = ao (computed using (2.6))
¢ = —bico + as

. . (3.2)
cs = —bics + as

after which impulse response weights will decline ex-

5 The raw data included one observation at 91 days. Preliminary fitting of the
models discussed in this section indicated that the probability of observing a stay
that long in a sample of the size actually drawn would be very small, about 1.8
percent at the most. We were unable to verify whether this observation may have
been an error in hospital records or an error in transcription of the data. To insure
that estimates of the impulse response weights at low lags, which will be of primary
importance for forecasting, would not be distorted by inclusion of this observation,
it was dropped from the sample.
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ponentially according to
(3.3)

We would expect by to be approximately —.8, a; through
a4 to be positive, and as to be negative to accommodate
the sharp drop in frequency at five days.

The estimates obtained for model (3.2)-(3.3) appear in
Table 1A. The signs of the coefficients are as expected
from study of the histogram. Impulse response weights
implied by these estimates are plotted in Figure A where
the importance of the numerator parameters in accom-
modating the hump of the distribution is readily ap-
parent. As a check on the model, versions with » = 4 and
r = 6 were also fitted, and the results are presented in
Table 1A and Figure A. Deletion of one numerator
parameter reduces the value of the log likelihood by
about 27, an amount which is highly significant in the
context of a X? test. The addition of as, however, in-
creased the log likelihood by only about .26, an amount
which is not significant. Further, the estimate of as is
very small and estimates of the other parameters change
only slightly.

C; = —b1C]'_1 ]. Z 6.

1. Maximum Likelihood Estimates of Rational
Lag Parameters

Parameter r=5,s=1 r=4,s=1 r=6,s=1 r=5s=2
A. From Cross-Section Data, N = 1290

a, -.00962 .01002 .00942 .01002
a, .0360 .0348 .0337 .0341
a, .0597 .0610 .0677 .0557
as .0718 .0740 .0633 .0631
a, .0298 — .0304 .0285 .0097
as — .0718 — — .0662 — .0586
ag — — — .0029 —
b, — .8649 — .8507 — .8666 -1.0190
b, — — — .1330

() —3730.99 —3758.02 —3730.73 —3730.74

B. From Adult Cross-Section Sample, N = 1,124

a, .01052 .0106° .01112 .01102
a; .0399 .0412 .0409 .0338
a, .0684 .0656 .0657 .0299
a, .0306 .0347 .0321 - .0215
ay .0117 - .0150 .0106 — .0248
as — .0305 — — .0296 — .0064
ag — — .0002 —
b, — .8690 — .8628 — .8689 -1.6791
b, — — — .7011
() —3372.87 -3377.9 -3372.77 —3368.97

2 Implied by constraint a(1)/b(1) = 1.

It is interesting to note, however, that the standard
error for ag implied by — {G~!} is only .0002, or about
one-tenth the size of the coefficient estimate. If we were
to rely on these asymptotic standard errors, we would be
obliged to regard as ‘‘significant’” a parameter which
makes no meaningful contribution to the fit of the model
as measured by the log likelihood. The source of the
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inconsistency is probably due, as mentioned earlier, to
the fact that the log likelihood is poorly approximated by
a quadratic in the neighborhood of the ML estimates.
Bithell [1] has proposed that Pascal distributions
offer a promising class of models for hospital length-of-
stay distributions. The intuitive appeal of the Pascal
distribution derives from the familiar stages-of-servicing
interpretation where, in this context, a patient can be
thought of as passing through a succession of stages in
which the probability of transition to the next stage after
1 days is given by (1 — a)a’. The number of stages, say s,
gives the order of the distribution which can be written

c(L) = (1 —a)/(1 = al)-. (3.4)

For values of s greater than one, the Pascal readily
generates hump-shaped distributions. It has the im-
portant practical advantage of being a one-parameter
distribution for given s; therefore, estimation requires
nothing more complex than a visual search of thelikelihood
over values of a. ML estimates of « for s = 2 and 3
appear in Table 2. It is clear from the values of £( )
that the larger-order Pascal is not to be preferred to the
smaller-order, i.e., s = 2 appears to fit the data better.
The humps generated by the Pascal distributions were
not nearly high enough to account for the observed
frequencies at three and four days, and the hump for the
third-order model was placed too far to the right. This
accounts for the better fit of the second-order model and
the fact that both have log likelihoods much smaller than
those of the rational models.

2. Maximum Likelihood Estimates of Pascal Lag
Parameters from Cross Section Data,

N = 1290
Pascal Pascal Unconstrained
Parameter s§s=2 s=3 s=2

a .7880 7124 —

b, —1.57592 —2.13722 —1.4999

b, .62092 1.52252 .5526

b, — — .36162 —
() —3865.19 —-3907.97 —3847.75

2 Implied by value of a.

In a literal sense, of course, the Pascal models are of
rational form with the special constraints that » = 0 and
b(L) be of the form (1 — aL)®; in other words, the roots
of b(L) = 0 must be identical. The second constraint
can be relaxed in an s parameter model

c(L) = b(l)/b(L),

which we refer to as an unconstrained Pascal model. ML
estimates of b, and b, for the second-order case also appear
in Table 2. Plotting of the impulse response weights
revealed that the unconstrained model differed relatively
little in lag shape from either of the strict Pascals, still
failing to follow the sharp hump at three and four days.
Relaxation of the constraint in the second-order model

(3.5)
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can be interpreted as the addition of one parameter,
which on the basis of a X? test is clearly significantly
different from zero. Thus we reject the constraint implicit
in the strict Pascal model. It is apparent that if we wanted
to think of patients passing through successive stages of
servicing, then the Markovian transition probabilities
are different for different stages. In view, however, of the
much higher value of ¢( ) for the more general rational
models of Table 1A, the stages of servicing approach
would not seem to be a satisfactory one for the data at
hand.¢

Since the unconstrained Pascal model with » = 0 and
s = 2 and the preferred rational model with r = 5 and
s = 1 are not nested, a direct comparison on the basis of
likelihood ratio is not feasible. Both models, however, are
nested in a rational model with » = 5 and s = 2, results
for which are reported in the last column of Table 1A.
The marginal effect of the five numerator parameters
relative to the unconstrained Pascal is an increase in the
log likelihood by 17.01, an amount which is highly signif-
icant. The marginal effect of the second denominator
parameter relative to the rational model with »r = 5 and
s = 1, however, is seen to be negligible.” The likelihood
criterion therefore indicates little advantage to the addi-
tion of by to the rational model but considerable ad-
vantage from addition of a;, - - -, as to the unconstrained
Pascal model. Clearly, then, numerator parameters are
essential for economical fitting of the hump of the fre-
quency distribution.?

4. THE EFFECT OF OMITTING INFANTS
FROM THE SAMPLE

The ultimate objective of a study of admissions and
discharges is to provide a method of forecasting dis-
charges so that future admissions may be scheduled to
meet the objectives of hospital management, presumably
maintenance of occupancy near some optimal level. The
appropriate definition of occupancy might reasonably
exclude newborn infants since these patients do not
occupy bed space in the usual sense ; rather, the number of
nursery cribs is readily varied to meet current needs.
Since the length-of-stay distribution may be influenced by
the presence of nursery patients in the sample, they were
deleted to form an “adult” sample of 1,124 patients. Al-
though the “adult” sample includes pediatric cases, the

¢ The stages of servicing would give results comparable to the rational models of
Table 1B if we were willing to expand the order of the b(L) polynomial sufficiently.
This follows from the fact that if a(L) and b(L) are the polynomials corresponding
to a rational model, then the denominator polynomial (L) for a stage of servicing
model is given by equating coefficients of powers of L in the approximation
5(L)/b(l) =~ b(L)/a(L) where the order of 5(L) is determined by the precision of
approximation desired. The rational model, however, clearly provides a much more
economical representation of the lag in terms of the number of parameters required.
For a discussion of the approximation of lag structures by ratios of lag polynomials,
see [3, pp. 44-52].

7 As a final check on the rational models, we fitted a model with r =6, s = 2 to
allow for the possibility that another numerator parameter might improve the fit
significantly. The value of the log likelihood was —3728.96, an increase of 1.78
over r = 5, s = 2 which is significant at the ten percent level but not at the five
percent level. Relative to the simpler » = 5, s = 1 model, the increase in the log
likelihood is 2.03 which is not significant at the 10 percent level. There would seem
to be little to be gained, then, from using the more complex model.

8 See Footnote 6.
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relevant characteristic of this subsample is that it repre-
sents occupancy of beds for which there is a definite
physical constraint.

The histogram for the adult sample is plotted in Figure
B and differs from the total sample histogram primarily
in the humped portion of the distribution. In particular,
the peak of the distribution is at three rather than four
days and the frequency at the peak is .1290 rather than
.1612. Since it is in the hump of the total sample distribu-
tion that the Pascal models fit poorly, there is some reason
to expect them to have more success with the adult
sample.

B. Histogram of Lengths of Stay—Adult Sample

Frequency

ADULT SAMPLE

r—4 s—1

r==5 s—=1

| r—=6 s=1

Length of stay—days

Rational models with r = 4, 5, and 6 and s = 1 yielded
the ML estimates displayed in Table 1B. Comparing log
likelihoods for the three models, it is evident that a; is
highly significant while the addition of as represents a
negligible gain, as in the results for the total sample.?

Differences among the models are evident from the
impulse response weights displayed in Figure B. The
r = 4 model fails to account adequately for the length-
of-stay frequency at Day 4, implying instead a consider-
ably lower frequency than that observed in the adult
sample. It may appear implausible at first that the model
could exhibit that large a discrepancy at Day 4 since a4
could be chosen to make the discrepancy as small as

9 In this case, the estimate of as at .0002 is insignificant even by the criterion of
its large sample standard error which is also .0002.
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desired. If that were done, however, the impulse response
weights at longer lags would have exhibited larger dis-
crepancies since they are given by ¢; = —bic;_;1 with ¢4
as an initial condition. By choosing a seemingly large
discrepancy at Day 4, the likelihood criterion has simply
selected the best compromise.

While the » = 5, s = 1 model is the same one preferred
for the total sample, differences between the parameter
estimates reflect differences in the shape of the length-of-
stay distributions. Estimates of a; and a, are larger for
the adult sample while a3, a4, and as are smaller. The
estimate of by is very little different, reflecting the fact
that the tails of the two histograms are very similar.

Pascal models of orders 2 and 3 again yielded impulse
response weights which failed to capture adequately the
hump in the frequency distribution. The second-order
model again had the larger likelihood with the hump in
the third-order Pascal being too far to the right relative
to that of the histogram. An unconstrained second-order
Pascal model produced a hump which was sharper than
that of the second-order strict Pascal with a significant
increase in the log likelihood. The unconstrained Pascal
nevertheless failed to conform adequately to the
histogram.

Pursuing the same strategy of model comparison as in
the analysis of the total sample, we fitted a model with
five numerator parameters and two denominator parame-
ters as shown in the last column of Table 1B. The increase
in log likelihood over the second-order unconstrained
Pascal is 60.22, which is highly significant as one would
expect. The increase in log likelihood over the r = 5,
s = 1 model is 3.90, which is also highly significant.
Plotting of the impulse response weights for the r = 5
and s = 1 and 2 models revealed that the s = 1 model
fits better in the hump of the distribution while the
s = 2 model fits better in the area from six to 20 days.
These differences are minor from an operational view-
point, and the slight edge of the s = 2 model is probably
offset in practice by the simplicity of the s = 1 model.
Finally, since both the s = 1 and s = 2 models showed
relatively large discrepancies at lags 5 and 6, we fitted
an r = 6, s = 2 model as a final check. The increase in
log likelihood was only .49 which is not significant.

5. IMPLICATIONS FOR SCHEDULING ADMISSIONS

The objective of scheduling admissions is to maintain
the hospital census near some optimal level. The optimal
number of admissions depends therefore on the expected
path of future discharges. As of a given day ¢, the expected
number of discharges on day ¢ + k is

E(Dii) = Sico cidirni

+ Zf=k ciliri—i + Elern], (5.1)

where A} —; denotes the number of admissions scheduled
for day (¢ + k — 7). Parameters ¢; may be estimated con-
sistently from cross-section data as we have seen in
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preceding sections. Clearly, the cross-section data provide
no direct information on the serial correlation structure
of {e} which will be essential for evaluating E[e. s ].
This is readily inferred, however, by studying the implied
error series {&;} computed from

&= D, — (a(L)/b(L))A, (5.2)

where d¢(L) and b(L) are lag polynomials in the cross-
sectional parameter estimates.

Sample autocorrelations of computed errors for the
70C observation time series of admissions and discharges
referred to in Section 1 using parameter estimates from
the full cross-section sample for model » = 5, s = 1 sug-
gested a weekly “seasonal”’ model of the form

€& = &7
+ (1 - 01L — 02112 - 03L3)(1 - A1L7 — AgL“)ut, (53)

where the u, are 1.i.d. disturbances.’® Least squares esti-
mates of the parameters are:

6, = .1906 A, = 8131
0, = .1272 A, = .1601 (5.4)

and all are highly significant.

The noise process given by (5.3)—(5.4) is quite different
from that exhibited by the residuals from the time series
estimates of distributed lag parameters referred to in
Section 1. In particular, for a rational lag distribution
with r = 9 and s = 1 we obtained a fitted model for the
errors as follows:

& = .382¢_7 + (1 — .187L — .260L»)u,.  (5.5)

The difference should not be surprising in view of the
evidence that the time series estimates of the distributed
lag parameters themselves are seriously biased due to
correlation between the admissions series and the dis-
turbance process. Clearly, admissions scheduling based
on the time series estimates would be quite different from
that based on the cross-section estimates and possibly
seriously suboptimal. '

It is important to distinguish between prediction in the
sense that it is being used in this discussion and prediction
in the sense of least-squares fit. For purposes of control,
the relevant prediction is the expected response of dis-
charges to some deliberate change in admissions. The
relevant parameters, the c¢;, could be estimated con-
sistently from time series data if the admissions series
were truly exogenous to the system. This might con-
ceivably be arranged by forcing admissions to follow some
fixed pattern regardless of the desirability of the con-
sequences. In the regular operation of the hospital,
however, Equation (1.1) is only one in a multiequation
system of which the control policy (whether optimal or
not) is also an integral part. Thus, both discharges and
admissions are endogenous to the system as a whole and

10 The identification and estimation of seasonal time series models is developed
by Box and Jenkins [2].
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the estimation of Equation (1.1) can be thought of as a
problem in estimating one equation in a simultaneous
system.

As usual in such situations, the least-squares estimates
provide by definition the minimum squared error predic-
tions given observed values of the right-hand-side
endogenous variable, but nevertheless provide incon-
sistent estimates of the structural parameters. Of course,
it is those structural parameters which are relevant for
design of a control scheme, and thus we are obliged to
seek consistent estimators. As mentioned in Section 1,
the problems posed by the endogeneity of ‘“policy”
variables are intrinsic to many economic systems, al-
though in empirical work as well as in textbook discus-
sions such variables are almost always categorized as
““exogenous.”’

6. SUGGESTIONS FOR FURTHER RESEARCH

These results suggest possible extensions in several
directions. In the hospital setting, the most obvious
direction is probably toward disaggregation of the system
into service units which may have materially different
dynamic structure, e.g., surgery, maternity, etc. A more
extensive data set would allow investigation of the tem-
poral stability of the length-of-stay distribution including
the possibility of seasonal variation. Although the ad-
missions scheduler can only adjust the volume of ad-
missions to regulate occupancy in the system, it may be
that the response of the system is sensitive to the level
of occupancy. Some experimentation with variable-lag
models having parameters dependent on the level of
occupancy could conceivably be profitable.

In a broader context, the cross-section approach to
estimation may be useful in nonhospital settings where
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length-of-stay measurements can be made. Examples
might include the lag distribution between inception and
completion of capital investment projects, time to re-
payment for a class of bank loans, students entering and
leaving a Ph.D. program, lapsing of life insurance policies,
response from mail-order advertising, time from sub-
mission to publication of journal articles, ete. If the input
to a particular system is subject to control, the cross-
section technique may represent the only feasible ap-
proach to consistent estimation. In noncontrol settings,
it may offer an alternative to time series estimation in
which case the two approaches could serve a corrobora-
tive function.

[Received August 1973. Revised April 1974.]
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